Numerical Analysis 1

Assignment 4

1. Consider a function $f(x) = \sin(\frac{\pi}{2}x)$ defined on the nodes $x_j = \{-3, -2, -1, 0, 1, 2, 3\}$.

- (a) Find Newton's interpolation polynomial $P_5(x)$ for f(x) based on these nodes.
- (b) Find the Taylor's polynomial $T_5(x)$ of f(x) around $x_0 = 0$.
- (c) Use each of the polynomials in (a) and (b) to approximate $f(\frac{5}{3}) = \sin(\frac{5\pi}{6}) = \frac{1}{2}$.
- (d) Which of the two approximations has a smaller error? Explain.
- 2. Suppose we approximate $f(x) = \sin(3x)$ on $x \in [0, 5]$ using piecewise-linear interpolation on equally-spaced points. How many points are needed to bound the error by 10^{-6} ?
- 3. Suppose we approximate a smooth function f(x) using *piecewise-parabolic* interpolation on equally-spaced points in [a, b], i.e., given a table of $f(x_i)$ we use three table values $\{x_{i-1}, x_i, x_{i+1}\}$ to approximate f(x) inside [a, b] using a second order polynomial $P_2(x)$.
 - (a) Find an error bound for $\max_{a \le x \le b} |f(x) P_2(x)|$.
 - (b) Answer question 2 assuming we use piecewise-parabolic interpolation instead of piecewise-linear.
- 4. Consider the Runge function $f(x) = \frac{1}{1+x^2}$ $x \in [-5,5]$. In this question, you will use Lagrange's interpolation to approximate it.

(a) For a uniform grid of N + 1 points, i.e., $x_k = -5 + kh$, $h = \frac{10}{N}$, use the **polyfit** MATLAB function to find the interpolation polynomial for N = 5, 11, 21.

(b) Using the **polyval** and **plot** MATLAB functions, plot the polynomials of section (a), for values of x = -5 : 0.01 : 5.

(c) Compute the maximal interpolation error.

(d) Repeat (a-c), using piecewise-linear interpolation, which is given by the MATLAB function **interp1** with the third parameter given as *linear*

(e) repeat (d), using piecewise cubic interpolation, which is given by the MATLAB function **interp1** with the third parameter given as *pchip*

- 5. We seek an interpolating polynomial of the function $h(x) = 1/(1+25x^2)$ on the interval $x \in [-5, 5]$ using 11 interpolation points.
 - (a) Find (or write a program that finds) the Lagrange polynomial using equally spaced *x*-values as interpolating points..
 - (b) Repeat (a) using the Chebyshev interpolating points.
 - (c) Plot h(x) versus the polynomials in (a) and (b).
 - (d) Which choice of interpolating points works better?