
Project #4: MITM Attacks and Authentication

CS 645: Network Security
Due: June 6, 2012 11:59 pm EST

May 25, 2012

This project is based on a project designed by Dan Boneh for his class (cs 255) and used by Yoshi Kohno
in his class (cse 484). Thanks Dan and Yoshi.

1 Overview

1.1 Introduction

For programming project 4, you will implement a man-in-the-middle (MITM) attack on SSL, using an SSL
proxy server. You will also implement a simple (command-line) administrative interface for the proxy that
will make use of password authentication.

This project is for educational purposes only, and should never be used outside of this class. Conducting
real attacks in unethical.

1.2 Background

Recall that an eavesdropper on an SSL connection has little power because of the encryption being used,
but if an attacker is able to trick the user into using the attacker’s public key rather than the intended
receipient’s, this security is lost. While a real attacker would likely intercept and manipulate the network
packets direcly to implement this attack, you will be making an SSL proxy. After a client (i.e., a web browser)
is configured to make use of an SSL proxy, all client SSL requests are intercepted by the proxy and relayed
to the intended remote webserver.

After an initial plaintext proxy CONNECT request by the client, normally the proxy just forwards the
encrypted data to the server. However, instead of forwarding the initial request to the remote server, your
proxy will setup its own connection with the remote server and setup a connection to the client using its
own certificate. Then all traffic between the (client AND proxy) and the (proxy AND web-server) is SSL
encrypted, but with different keys. This means that the proxy has access to the plaintext data sent and
received by the client. Having the proxy use a single, fixed SSL server certificate is not ideal, though, because
modern web browsers check the common name (CN) field of the certificate against the domain name of the
remote server and check to make sure serial numbers are not duplicated. So, to mount a more transparent
MITM attack, the proxy will have to generate new server certificates on the fly, for each new client request.
Web browsers will still complain once that the certificate is not trusted, but if the user clicks past this
warning, then the attacker wins. Note: this attack will not work well on Firefox 3 because it disallows the
use of self-signed certificates. You should test your code on another browser (Firefox 2, Konqueror, Safari,
IE 7, probably others).

You will be learning:

• keytool (command line utility) to generate and manage keys and certificates.

• IAIK-JCE APIs to create and sign certificates programmatically.

1



• JSSE (Java Secure Socket Extension) to do secure networking.

1.3 Requirements

We will provide you with code for a basic SSL proxy, and you will need to do the following :

• Build and use a public key infrastructure using X509 certificates.

• Modify the SSL proxy to dynamically generate new SSL server certificates, based on the domain name
of the requested remote web server and the serial number of the website’s certificate.

• Implement password authentication, over an SSL connection, for a simple administrative interface.

We will examine each of these features in detail below.

2 Description

2.1 Secure communication

You will be working with network sockets. The JCE provides an abstraction for secure sockets in the
javax.net.ssl package and this relieves us from explicitly performing the key exchange, encryption and in-
tegrity of the messages transferred over these sockets.

2.2 Public Key Infrastructure

2.2.1 Offline Key Generation

The SSL proxy has a public/private key pair which is generated offline using keytool. The keytool is used
to generate a keystore for each entity in the system. Before the system is bootstrapped, you will have to
generate a public/private key pair for the SSL proxy. The public key of the proxy is self-signed.

2.2.2 Generating new server certificates

After connecting to a remote webserver, the proxy will have to create a new server certificate which has the
same common name (CN) field and serial number as the remote webserver’s certificate. This new certificate
will then be presented to the client, for use in an SSL session. You will use classes from the IAIK library to
create and sign these new server certificates.

2.3 Password Authentication

In addition to implementing the MITM attack with the proxy server, you will implement a simple remote
administrative interface for the proxy server, which uses password authentication. This will allow the hacker
to remotely log into the server and issue commands. In order to ensure only those users the attacker has
authorized can log in, the interface will use password authentication. To connect to the proxy server, the
administrative program will setup an SSL connection to the proxy server and transmit the hacker’s username,
password, and command. The proxy server maintains a password file, which contains a list of authorized
usernames and passwords, stored salted and hashed. When the proxy receives a log in request, it should
compare the hash of the received password with the stored hash from the appropriate user, allowing the
user to proceed if they match, otherwise closing the connection. Once the admin client is authenticated, the
appropriate command should be executed.

You will need to implement the following commands:

• shutdown: shutdown the MITM proxy server

• stats: List how many requests were proxied

2



These should be easy commands to implement. The most important aspect of this part of the assignment
is handling user authentication.

2.4 System Setup

There are four main types of entities in our system: the user’s web browser, the remote webserver the user is
attempting to connect to, the proxy server intercepting the connection, and the administrative client to the
proxy server. Once the proxy server is started and begins listening for connections, the user’s web browser
should be configured to use an SSL proxy with the hostname and port used by the MITMProxyServer. All
SSL connections by the web browser will then be routed through the proxy server. (You don’t need to proxy
non-SSL connections.)

When the browser attempts to make an SSL connection, the proxy will parse the CONNECT request
and make its own SSL connection to the requested server. The proxy will use the connection to obtain the
remote server’s certificate. The proxy will then create a forged certificate which copies the entries in the
remote server’s certificate (e.g., its Common Name and Serial Number). The proxy then signs this generated
certificate with its self signed CA certificate (loaded from a keystore specified at startup). It then passes this
generated certificate back to the web browser, setting up an SSL connection between itself and the browser.
The proxy then passes data, which it of course sees in the clear, between the two connections.

In addition to listening for connections from web browsers, the proxy server listens for connections from
the admin client on a separate port. When the admin client wants to connect to the proxy server, it opens
an SSL connection to the proxy on its hostname and admin port and transmits a username and password.
The proxy server then consults its password file (specified at startup and stored on disk) and authenticates
the user. The password file should be encrypted using an authenticated encryption scheme and a key derived
from a separate password; the password should be specified on startup.

3 Implementation

We have provided you with starter code. The starter code illustrates the basic socket and thread program-
ming. See the following section for links of tutorials on socket and thread programming. In addition to Sun
Java JCE library, you need IAIK JCE extension library to create and sign X509 certificates. The library is
included in the starter code.

3.1 Description of the code

Here is a brief description of some of the starter code. The files you need to modify are in bold and have a
* in front of them:

3



File Description
* Makefile Makefile for the project; modify this file to compile new classes that

you add.
* MITMProxyServer.java Starts up the SSL proxy server.
* HTTPSProxyEngine.java The core SSL proxy code.
* MITMSSLSocketFactory.java Used in the creation of new SSL sockets.
* MITMAdminClient.java Command line tool for remotely accessing the proxy server.
* MITMAdminServer.java Creates connections with authorized admin clients.
ProxyDataFilter.java Logs the (plaintext) data exchanged between the client and remote

webserver.
ConnectionDetails.java Holds information about the two endpoints of a TCP connection.
CopyStreamRunnable.java Blindly copies data from an InputStream to an OutputStream.
MITMPlainSocketFactory.java Used to create unencrypted sockets, to handle the initial browser

proxy CONNECT request.
ProxyEngine.java Abstract parent class of HTTPSProxyEngine.
StreamThread.java Copies data from an InputStream to an OutputStream, using a

ProxyDataFilter to record the data that’s being streamed through

Of course, you can also add new files. For example,, you will need to add a class which reads a file of
admin-client usernames and passwords, and generates an encrypted file using a key generated from the proxy
password. This class is run separately from the above framework and is needed to precompute the encrypted
file which has a list of usernames and the corresponding authentication information.

3.2 Running the code

You should spend some time getting familiar with the provided framework and reading the comments in the
starter code. You will need to copy the cs645-pp4.tar.gz file to your account. You will also need to source
setup.csh to set your path and classpath correctly. Change your browser settings to make use of an SSL
proxy. You don’t need to proxy non-SSL traffic.
Start the SSL Proxy:

% java mitm.MITMProxyServer -keyStore [yourkeystore] -keyStorePassword [kspwd] -outputFile [logfile] &

Run an admin client:

%java mitm.MITMAdminClient -userName [user] -userPassword [pwd] -cmd [cmd]&

3.3 Crypto Libraries and Documentation

In addition to java.security and javax.crypto, some classes in iaik.x509 and iaik.asn1.structures are also
needed to do certificate management.

Important note: We require that your submission work with the Java API version on the Linux machines
in the computer lab. Alse, use the version of the IAIK library provided by us.

The following are some links to useful documentation :

• Java API http://java.sun.com/j2se/1.5.0/docs/api

• IAIK-JCE API http://javadoc.iaik.tugraz.at/iaik_jce/current/index.html

• Java Keytool Manual http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

• JCE Reference Guide http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.
html

4



• JSSE Reference Guide http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.
html

• Sun Tutorial on Socket Programming http://java.sun.com/docs/books/tutorial/networking/

sockets/

• Sun Tutorial on Thread Programming http://java.sun.com/docs/books/tutorial/essential/threads/

Some classes/interfaces you may want to take a look at:

• java.security.SecureRandom

• java.security.KeyStore

• java.security.PublicKey

• java.security.PrivateKey

• javax.net.ssl.KeyManagerFactory

• javax.net.ssl.KeyManager

• javax.net.ssl.TrustManagerFactory

• javax.net.ssl.TrustManager

• java.net.ServerSocket

• java.net.Socket

• javax.net.ssl.SSLSocket

• javax.net.ssl.SSLServerSocket

• javax.net.ssl.SSLSocketFactory

• javax.net.ssl.SSLContext

• javax.net.ssl.SSLSessionContext

• java.security.cert.Certificate

• java.security.cert.X509Certificate

• iaik.x509.X509Certificate

• iaik.asn1.ASN1Object

• iaik.asn1.structures.AlgorithmID

• iaik.asn1.structures.Name

4 Miscellaneous

We encourage you to discuss socket programming, Java, SSL, Java and SSL, etc. The goal is to learn as
much as possible, and we firmly believe that people learn by both doing (this project) and by sharing ideas
and thoughts with others. You may work in groups of up to three people. You can use the same groups as
for the other projects. Or you can form new groups.

5



4.1 Deliverables

In addition to your well-decomposed, well-commented solution to the assignment, you should submit a
README containing the names of the people in your group.

In your README you should also include a description of your final design, as well as any design choices
that you made in implementing each of the required security features.

Please also include

• a sequence of steps which will be required to run your system.

• all the keystores you have created and list their names and passwords in the README.

• a copy of a proxy log file (take care not to leave any passwords or credit card numbers in it!)

• If I cannot get your system to work (quickly) on the lab machines, your grade will be lowered. To get
(some) credit for the assignment I will arrange for you to demo the project to me in the lab.

Finally, please write a short answer to the following:

Why is this attack less successful on Firefox 3? What are the advantages and disadvantages of their
approach? How else might you change a web browser to make it less likely that a user would be fooled by an
attack like the one you implemented?

This is an important question to ask because when dealing with security, we never just build attacks we also
need to think of ways to prevent them.

Turn in a .tar.gz of all your files using bbvista.

Late policy: Your grade will be reduced by 20% for each day the project is late.

5 Grading

The most important aspect of this assignment is the security design choices that you make, so make sure
to document that well in your README. Next, the implementation has to be correct and it needs to work
as specified. I am not going to debug your setup or java code. Usability matters. Completeness matters:
your project should include all required parts. Coding style, elegance, and efficiency will be secondary
considerations.

6


