
Ariel Stolerman \ CS623 Winter 2012 Assignment #4 1

CS623 Winter 2012 \ Assignment #4

Ariel Stolerman

1)

Following is a reduction from the sorting problem to the problem of computing Voroni diagrams, proving a () bound

for the latter:

For a given set * + of real numbers (assuming all distinct, otherwise we can reduce it to a distinct set in linear

time, remembering how many copies we have for each value), do the following:

 Find and .

 Construct a set of points that are the projections of the values in on the top (or bottom, w.l.o.g) arc of the circle

that has () () as diameter. For any point this can be computed by finding the intersections of

the line (the perpendicular to the -axis that goes through) with the circle equation (for the circle centered in

(

) with radius

), and taking the top one (for the upper arc intersection). Denote these points

 * +. Note that and are the only ones known to be mapped to their sorted order - and

respectively.

 Find the Voroni diagram of , which has exactly one vertex and cells ((), for all). Denote that vertex (which

equals to (

)).

 For each , () has 2 edges. Look at the vector ̅̅̅̅ , and denote the edge to the left of it (in the direction from

to) as the left edge of (), and the edge to the right similarly.

 Find the right edge of (), and continue in clockwise cyclic order over all the edges of , each phase mapping ,

the right edge of () to the original value from , namely .

 Return the resulted sequence of values, which is the sorted sequence of the points in .

Correctness:

We know that a point is a vertex of () iff its largest empty circle () (a circle centered at) contains 3 or more sites

on its boundary. The construction above makes sure all subsets of 3 or more sites in have the same unique circle,

centered at (

), therefore is the only vertex in the Voroni diagram of , and it looks as follows (in red):

𝑣 𝑝

𝑒

𝑝𝑛

𝑒𝑛

𝑝𝑖 𝑒𝑖

Ariel Stolerman \ CS623 Winter 2012 Assignment #4 2

Since we can trail on the incident edges of in cyclic order around it, we can find the order of the corresponding sites

(defined as those whose cell is bounded “on the right” by the edge) which is the order of the points on the boundary of

the circle, which corresponds to the sorted sequence of the values in .

Running time:

Every phase but the Voroni diagram calculation is linear – mapping the values to the points and trailing over the incident

edges of , returning the corresponding values in sorted order.

Therefore we have mapped the sorting problem to the Voroni diagram computation problem, so the latter is bounded by

 (), otherwise we would have a sorting algorithm with () running-time, which cannot exist.

2)

Let be a set of points in the plane. Following is a () algorithm that finds 2 points in that are closest together:

 Compute the Voroni diagram of , maintaining a pointer of each half-edge to its corresponding site in .

 For each edge in the resulted diagram (excluding any bounding box edges):

o Get the sites corresponding to both half edges.

o Compute the distance ̅̅ ̅̅ ̅

o Store the minimum ̅̅ ̅̅ ̅ encountered thus far, with the corresponding sites .

 Return the sites left with the minimal distance between them ̅̅ ̅̅ ̅.

Correctness:

Using Fortune’s algorithm it is easy to maintain the sites corresponding to half-edges in the Voroni diagram. After obtaining

the Voroni diagram, it is sufficient to check only distances between two points that their Voroni cells () ()

share an edge in the Voroni diagram.

Suppose for any two sites , () and () don’t share an edge. In this case there would be a site and a point

 ̅̅ ̅̅ ̅ such that (). By definition | ̅̅ ̅̅ ̅| | ̅̅ ̅̅̅|, and so:

| ̅̅ ̅̅ ̅̅ |

| ̅̅ ̅̅ | | ̅̅ ̅̅ ̅|

 | ̅̅ ̅̅ ̅̅ |

| ̅̅ ̅̅ | | ̅̅ ̅̅̅| | ̅̅ ̅̅ ̅|

Therefore is a closer site to than is, and () () share an edge.

After checking all possible pairs that their Voroni cells share an edge, it follows that we have found the minimal

distance pair in the entire set .

Running time:

Computing the Voroni diagram can be done in () time using Fortune’s algorithm. There are at most edges in

the Voroni diagram, and for each one we do a constant time check (obtaining the points corresponding to the edge,

checking the distance between them and compare to the minimal distance found thus far), so the total time of this phase is

linear. The total running time is therefore (), as required.

Ariel Stolerman \ CS623 Winter 2012 Assignment #4 3

3)

Suppose there are () intersections between the edges of the Voroni diagram and the farthest site Voroni diagram.

Following is a proof that the smallest width annulus can be computed in () expected time.

We follow the algorithm in the book for computing the smallest width annulus, with specific details on how to compute the

intersecting segments of the Voroni diagram (denoted VD) and the farthest site Voroni diagram (denoted FSVD). Given a set

of points :

 Compute the VD of and the FSVD of .

 Collect sets of size 4, whose points define the candidate annuli:

o For the first and second case (the outer circle contains at least 3 points or the inner circle contains at least 3

points): for each vertex in FSVD, we determine the point that is closest; for each vertex in VD, we determine

the point that is farthest. The total number of such sets is ().

o For the third case (2 points on each of the inner and outer circle): find all pairs of edges, one from each of the

diagrams, which intersect (in the way described later), and consider them for additional candidate sets of points.

 For all candidates choose the one that gives the smallest-width annulus as the solution.

For calculating the intersection of edges in VD with edges in FSVD: run a modified plain sweep algorithm, where all

coinciding endpoints of edges from the same diagram (VD or FSVD) are not considered as intersections (this can be done by

infinitesimally distant them from one another).

Correctness:

The correctness derives from the correctness of the algorithm described in the book. In addition, the method of

determining intersections is correct, since we are only interested in intersections between edges from different diagrams,

and any two edges in the same diagram may only intersect in their endpoints – so it is sufficient to ignore those cases only.

Running time:

Computing the VD takes () by Fortune’s algorithm, and computing the FSVD takes () expected time by the

algorithm given in the book. Collecting the sets for the first and second cases is (). Calculating the intersections for the

third case is (), where it is given that (). Therefore the third case takes a total of ()

 () time. The last phase of finding the smallest-width annulus of all () candidates is linear (an () check per each

set). The total concludes to () expected time, as required.

4)

Following is a proof that the smallest angle of any triangulation of a convex polygon whose vertices lie on a circle is the

same:

Let be the set of vertices of the given convex polygon. According to theorem 9.7 (page 198), any triangulation of is a

Delaunay triangulation if and only if the circumcircle of any triangle of does not contain a point of in its interior. Since

all points of reside on the same circle, then for any triangle , none of the other points { } lies

in the interior of the circumcircle of . Therefore, any triangulation of such convex polygon is a Delaunay

Ariel Stolerman \ CS623 Winter 2012 Assignment #4 4

triangulation. By theorem 9.9 (page 199), any Delaunay triangulation of maximizes the minimum angle over all

triangulations of . Since all triangulations are Delaunay triangulations, then all have the same unique maximum value of

the minimal angle, i.e. the smallest angle of any triangulation of a convex hull whose vertices lie on a circle is the same, as

required.

If this statement does not suffice, it can be shown that the minimum angle in any triangulation of a set of cocircular points

is the same using Thales’s theorem. It is sufficient to show that for any triangulation of a quadrilateral whose vertices are

cocircular, the minimum is the same. It is easy since we have only 2 possible triangulations (dotted lines):

The equalities of the angles denoted above is due to Thales’s theorem. For instance, since they both

reside on the circumference of the circle, and on the same side of the line passing through . Denote the minimum angle

of the two triangulations:

 * + * +

 * + * +

Therefore , and so for any triangulation of the quadrilateral , the value of the minimum angle is the same.

Therefore the minimum angle in any triangulation of a set of cocircular points is the same, as required.

5)

a.

Following is a proof that the set of edges of a Delaunay triangulation of contains an EMST for :

Assume by contradiction that some EMST for has an edge () not in the set of edges of some Delaunay triangulation

 . By theorem 9.6 (page 198), two points form an edge of the Delaunay graph of iff there is a closed disc that

contains on its boundary and does not contain any other point of . By the assumption it follows that for any disc

with on its boundary there is some * + such that is contained in , specifically the circle where () is its

diameter, in which case it is certain that |()| |()| |()|. But then we can construct a tree that is identical to

 but instead of () it has either () or () (depending in which subtree is of the two subtrees created by

removing () from). But then is smaller than , in contradiction of being an EMST. Therefore the set of edges of a

Delaunay triangulation of must contain an EMST for .

𝑟

𝑠

𝑞

𝑝

𝛼

𝛼

𝛽

𝛽
𝛾

𝛾

𝛿

𝛿

Ariel Stolerman \ CS623 Winter 2012 Assignment #4 5

b.

Following is an () (worst-case) algorithm to compute an EMST for :

 Compute the Delaunay triangulation (graph) of from the Voroni diagram of , calculated using Fortune’s algorithm.

Do that by having all sites as vertices and crossing an edge between any two sites that their cells () () are

adjacent (have a shared edge) in the Voroni diagram.

 Use Prim’s algorithm to compute an MST out of the resulted Delaunay graph.

Correctness:

Immediately derives from the correctness Fortune’s algorithm, correspondence between the Voroni diagram and the

Delaunay triangulation of , Prim’s algorithm for finding MSTs and what is proven in section (a): since the set of edges of a

Delaunay triangulation contains an EMST for , and from the uniqueness of the weight of an MST, it must be that any MST

constructed from those edges is an EMST.

Running time:

Calculating the Voroni diagram of using Fortune’s algorithm is (), and calculating the Delaunay triangulation from

it is linear (since the set of edges in the Voroni diagram is linear). Prim’s MST algorithm is (()), and in this case

 () (linearity of number of edges in a triangulation of the convex hull of , theorem 9.1, page 193), which means this

phase takes (). The total running time is therefore () expected time.

6)

a.

Following is a proof that () contains the Gabriel graph of :

Let () be an edge in Gabriel graph of , then by definition the disc with diameter () does not contain any other

point in , therefore are on a boundary of some disc that does not contain any other point in , which means by

theorem 9.6 (page 198) that () is an edge of (). The Delaunay graph property is simply more general than the

Gabriel graph property. Therefore any edge of the Gabriel graph of is contained in (), so the later contains the

former, as required.

b.

Following is a proof that and are adjacent in the Gabriel graph of iff the Delaunay edge between and intersects its

dual Voroni edge.

First assume and are adjacent in the Gabriel graph, then are the two ends of a diameter of a disc that contains no

other points in , and is centered at the midpoint between , denoted . Since no other point is contained in , then

the closest sites to are and and no other point in is closer. Therefore an edge of the Voroni diagram passes between

the cells () and (). Moreover, since is equidistant from and , resides on that Voroni diagram edge. Therefore

the Delaunay edge between and intersects its dual Voroni edge – the Voroni edge between the cells () and ().

Ariel Stolerman \ CS623 Winter 2012 Assignment #4 6

Now assume the Delaunay edge between and intersects its dual Voroni edge, then () and () must be adjacent in

the Voroni diagram. Moreover, the point of intersection lies on that Voroni edge and is equidistant from and . Now

observe the disc centered at that has on its boundary: suppose some point lies inside , then would have been

closer to than to or , and would not lie on the Voroni edge between () and () – in contradiction. Therefore the

edge () is the diameter of that disc that has no other points of in its interior, thus are adjacent in the Gabriel

graph of .

c.

We use what is proven in the previous sections to come up with an () algorithm for computing the Gabriel graph of

a set of points:

 Construct the Voroni diagram of .

 For any edge of the Voroni diagram between two cells () and () (), connect the edge () and check if

it intersects . If so, add it to the result set.

 Return the graph corresponding to the constructed result set.

Correctness:

The correctness derives immediately from section c.

Running time:

Computing the Voroni diagram takes () time using Fortune’s algorithm. The number of edges in that diagram is

 (), and for each edge we do a constant amount of work – finding and from the faces adjacent to the edge we are

checking, connecting segment ̅̅ ̅ and check if it intersects – the total running time of this phase is then linear. The total

running time is therefore ().

