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1) 

Following is a reduction from the sorting problem to the problem of computing Voroni diagrams, proving a  (    ) bound 

for the latter: 

For a given set   *       + of   real numbers (assuming all distinct, otherwise we can reduce it to a distinct set in linear 

time, remembering how many copies we have for each value), do the following: 

 Find           and          . 

 Construct a set   of points that are the projections of the values in   on the top (or bottom, w.l.o.g) arc of the circle 

that has (      )  (      ) as diameter. For any point      this can be computed by finding the intersections of 

the line      (the perpendicular to the  -axis that goes through   ) with the circle equation (for the circle centered in 

(
         

 
  ) with radius 

         

 
), and taking the top one (for the upper arc intersection). Denote these points 

  *       +. Note that    and    are the only ones known to be mapped to their sorted order -      and      

respectively. 

 Find the Voroni diagram of  , which has exactly one vertex and   cells ( (  ), for all  ). Denote that vertex   (which 

equals to (
         

 
  )). 

 For each    ,  ( ) has 2 edges. Look at the vector   ̅̅̅̅ , and denote the edge to the left of it (in the direction from   

to  ) as the left edge of  ( ), and the edge to the right similarly. 

 Find    the right edge of  (  ), and continue in clockwise cyclic order over all the edges of  , each phase mapping   , 

the right edge of  (  ) to the original value from  , namely     . 

 Return the resulted sequence of values, which is the sorted sequence of the points in  . 

Correctness: 

We know that a point   is a vertex of  ( ) iff its largest empty circle   ( ) (a circle centered at  ) contains 3 or more sites 

on its boundary. The construction above makes sure all subsets of 3 or more sites in   have the same unique circle, 

centered at   (
         

 
  ), therefore   is the only vertex in the Voroni diagram of  , and it looks as follows (in red): 
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Since we can trail on the incident edges of   in cyclic order around it, we can find the order of the corresponding sites 

(defined as those whose cell is bounded “on the right” by the edge) which is the order of the points   on the boundary of 

the circle, which corresponds to the sorted sequence of the values in  . 

Running time: 

Every phase but the Voroni diagram calculation is linear – mapping the values to the points   and trailing over the incident 

edges of  , returning the corresponding    values in sorted order. 

Therefore we have mapped the sorting problem to the Voroni diagram computation problem, so the latter is bounded by 

 (    ), otherwise we would have a sorting algorithm with  (    ) running-time, which cannot exist. 

 

2) 

Let   be a set of   points in the plane. Following is a  (    ) algorithm that finds 2 points in   that are closest together: 

 Compute the Voroni diagram of  , maintaining a pointer of each half-edge to its corresponding site in  . 

 For each edge   in the resulted diagram (excluding any bounding box edges): 

o Get the sites       corresponding to both half edges. 

o Compute the distance     ̅̅ ̅̅ ̅ 

o Store the minimum     ̅̅ ̅̅ ̅ encountered thus far, with the corresponding sites      . 

 Return the sites       left with the minimal distance between them     ̅̅ ̅̅ ̅. 

Correctness: 

Using Fortune’s algorithm it is easy to maintain the sites corresponding to half-edges in the Voroni diagram. After obtaining 

the Voroni diagram, it is sufficient to check only distances between two points       that their Voroni cells  (  )  (  ) 

share an edge in the Voroni diagram. 

Suppose for any two sites      ,  (  ) and  (  ) don’t share an edge. In this case there would be a site    and a point 

      ̅̅ ̅̅ ̅ such that    (  ). By definition |   ̅̅ ̅̅ ̅|  |   ̅̅ ̅̅̅|, and so: 

|    ̅̅ ̅̅ ̅̅ |  
        

          

|   ̅̅ ̅̅ |  |   ̅̅ ̅̅ ̅|  
          

   |   ̅̅ ̅̅ ̅̅ |

|   ̅̅ ̅̅ |  |   ̅̅ ̅̅̅|  |    ̅̅ ̅̅ ̅| 

Therefore    is a closer site to    than    is, and  (  )  (  ) share an edge. 

After checking all possible pairs       that their Voroni cells share an edge, it follows that we have found the minimal 

distance pair in the entire set  . 

Running time: 

Computing the Voroni diagram can be done in  (    ) time using Fortune’s algorithm. There are at most      edges in 

the Voroni diagram, and for each one we do a constant time check (obtaining the points corresponding to the edge, 

checking the distance between them and compare to the minimal distance found thus far), so the total time of this phase is 

linear. The total running time is therefore  (    ), as required. 
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3) 

Suppose there are  ( ) intersections between the edges of the Voroni diagram and the farthest site Voroni diagram. 

Following is a proof that the smallest width annulus can be computed in  (    ) expected time. 

We follow the algorithm in the book for computing the smallest width annulus, with specific details on how to compute the 

intersecting segments of the Voroni diagram (denoted VD) and the farthest site Voroni diagram (denoted FSVD). Given a set 

of   points  : 

 Compute the VD of   and the FSVD of  . 

 Collect sets of size 4, whose points define the candidate annuli: 

o For the first and second case (the outer circle contains at least 3 points or the inner circle contains at least 3 

points): for each vertex in FSVD, we determine the point     that is closest; for each vertex in VD, we determine 

the point     that is farthest. The total number of such sets is  ( ). 

o For the third case (2 points on each of the inner and outer circle): find all pairs of edges, one from each of the 

diagrams, which intersect (in the way described later), and consider them for additional candidate sets of points. 

 For all candidates choose the one that gives the smallest-width annulus as the solution. 

For calculating the intersection of edges in VD with edges in FSVD: run a modified plain sweep algorithm, where all 

coinciding endpoints of edges from the same diagram (VD or FSVD) are not considered as intersections (this can be done by 

infinitesimally distant them from one another). 

Correctness: 

The correctness derives from the correctness of the algorithm described in the book. In addition, the method of 

determining intersections is correct, since we are only interested in intersections between edges from different diagrams, 

and any two edges in the same diagram may only intersect in their endpoints – so it is sufficient to ignore those cases only. 

Running time: 

Computing the VD takes  (    ) by Fortune’s algorithm, and computing the FSVD takes  (    ) expected time by the 

algorithm given in the book. Collecting the sets for the first and second cases is  ( ). Calculating the intersections for the 

third case is  (      ), where it is given that    ( ). Therefore the third case takes a total of  (      )  

 (    ) time. The last phase of finding the smallest-width annulus of all  ( ) candidates is linear (an  ( ) check per each 

set). The total concludes to  (    ) expected time, as required. 

 

4) 

Following is a proof that the smallest angle of any triangulation of a convex polygon whose vertices lie on a circle is the 

same: 

Let   be the set of vertices of the given convex polygon. According to theorem 9.7 (page 198), any triangulation   of   is a 

Delaunay triangulation if and only if the circumcircle of any triangle of   does not contain a point of   in its interior. Since 

all points of   reside on the same circle, then for any triangle          , none of the other points     {        } lies 

in the interior of the circumcircle of        . Therefore, any triangulation of such convex polygon is a Delaunay 
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triangulation. By theorem 9.9 (page 199), any Delaunay triangulation of   maximizes the minimum angle over all 

triangulations of  . Since all triangulations are Delaunay triangulations, then all have the same unique maximum value of 

the minimal angle, i.e. the smallest angle of any triangulation of a convex hull whose vertices lie on a circle is the same, as 

required. 

If this statement does not suffice, it can be shown that the minimum angle in any triangulation of a set of cocircular points 

is the same using Thales’s theorem. It is sufficient to show that for any triangulation of a quadrilateral whose vertices are 

cocircular, the minimum is the same. It is easy since we have only 2 possible triangulations (dotted lines): 

 

The equalities of the angles denoted above is due to Thales’s theorem. For instance,             since they both 

reside on the circumference of the circle, and on the same side of the line passing through    . Denote the minimum angle 

of the two triangulations: 

       *               +     *       + 

       *               +     *       + 

Therefore      , and so for any triangulation of the quadrilateral     , the value of the minimum angle is the same. 

Therefore the minimum angle in any triangulation of a set of cocircular points is the same, as required. 

 

5) 

a. 

Following is a proof that the set of edges of a Delaunay triangulation of   contains an EMST for  : 

Assume by contradiction that some EMST   for   has an edge (   ) not in the set of edges of some Delaunay triangulation 

 . By theorem 9.6 (page 198), two points       form an edge of the Delaunay graph of   iff there is a closed disc   that 

contains     on its boundary and does not contain any other point of  . By the assumption it follows that for any disc   

with     on its boundary there is some     *   + such that   is contained in  , specifically the circle where (   ) is its 

diameter, in which case it is certain that |(   )|  |(   )| |(   )|. But then we can construct a tree    that is identical to 

  but instead of (   ) it has either (   ) or (   ) (depending in which subtree   is of the two subtrees created by 

removing (   ) from  ). But then    is smaller than  , in contradiction of   being an EMST. Therefore the set of edges of a 

Delaunay triangulation of   must contain an EMST for  . 
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b. 

Following is an  (    ) (worst-case) algorithm to compute an EMST for  : 

 Compute the Delaunay triangulation (graph) of   from the Voroni diagram of  , calculated using Fortune’s algorithm. 

Do that by having all sites as vertices and crossing an edge between any two sites     that their cells  ( )  ( ) are 

adjacent (have a shared edge) in the Voroni diagram. 

 Use Prim’s algorithm to compute an MST out of the resulted Delaunay graph. 

Correctness: 

Immediately derives from the correctness Fortune’s algorithm, correspondence between the Voroni diagram and the 

Delaunay triangulation of  , Prim’s algorithm for finding MSTs and what is proven in section (a): since the set of edges of a 

Delaunay triangulation contains an EMST for  , and from the uniqueness of the weight of an MST, it must be that any MST 

constructed from those edges is an EMST. 

Running time: 

Calculating the Voroni diagram of   using Fortune’s algorithm is  (    ), and calculating the Delaunay triangulation from 

it is linear (since the set of edges in the Voroni diagram is linear). Prim’s MST algorithm is  ((   )    ), and in this case 

   ( ) (linearity of number of edges in a triangulation of the convex hull of  , theorem 9.1, page 193), which means this 

phase takes  (    ). The total running time is therefore  (    ) expected time. 

 

6) 

a. 

Following is a proof that   ( ) contains the Gabriel graph of  : 

Let (   ) be an edge in Gabriel graph of  , then by definition the disc with diameter (   ) does not contain any other 

point in  , therefore     are on a boundary of some disc that does not contain any other point in  , which means by 

theorem 9.6 (page 198) that (   ) is an edge of   ( ). The Delaunay graph property is simply more general than the 

Gabriel graph property. Therefore any edge of the Gabriel graph of   is contained in   ( ), so the later contains the 

former, as required. 

 

b. 

Following is a proof that   and   are adjacent in the Gabriel graph of   iff the Delaunay edge between   and   intersects its 

dual Voroni edge. 

First assume   and   are adjacent in the Gabriel graph, then     are the two ends of a diameter of a disc   that contains no 

other points in  , and   is centered at the midpoint between    , denoted  . Since no other point is contained in  , then 

the closest sites to   are   and   and no other point in   is closer. Therefore an edge of the Voroni diagram passes between 

the cells  ( ) and  ( ). Moreover, since   is equidistant from   and  ,   resides on that Voroni diagram edge. Therefore 

the Delaunay edge between   and   intersects its dual Voroni edge – the Voroni edge between the cells  ( ) and  ( ). 
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Now assume the Delaunay edge between   and   intersects its dual Voroni edge, then  ( ) and  ( ) must be adjacent in 

the Voroni diagram. Moreover, the point of intersection   lies on that Voroni edge and is equidistant from   and  . Now 

observe the disc   centered at   that has     on its boundary: suppose some point   lies inside  , then   would have been 

closer to   than to   or  , and would not lie on the Voroni edge between  ( ) and  ( ) – in contradiction. Therefore the 

edge (   ) is the diameter of that disc   that has no other points of   in its interior, thus     are adjacent in the Gabriel 

graph of  . 

 

c. 

We use what is proven in the previous sections to come up with an  (    ) algorithm for computing the Gabriel graph of 

a set   of   points: 

 Construct the Voroni diagram of  . 

 For any edge   of the Voroni diagram between two cells  ( ) and  ( ) (     ), connect the edge (   ) and check if 

it intersects  . If so, add it to the result set. 

 Return the graph corresponding to the constructed result set. 

Correctness: 

The correctness derives immediately from section c. 

Running time: 

Computing the Voroni diagram takes  (    ) time using Fortune’s algorithm. The number of edges in that diagram is 

 ( ), and for each edge we do a constant amount of work – finding   and   from the faces adjacent to the edge   we are 

checking, connecting segment   ̅̅ ̅ and check if it intersects   – the total running time of this phase is then linear. The total 

running time is therefore  (    ). 

 


