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1) 

Let   be a set of   disjoint line segments whose upper endpoints lie on the line     and whose lower endpoints line on 

line    , partitioning the horizontal strip [    ]  [   ] into     regions. Following is a  (    ) algorithm top build 

a binary search tree of the segments in   such that the region containing a query point can be determined in  (   ) time: 

 Sort all segments in   by their upper endpoint  -coordinate and insert them into a balanced binary search tree, such 

that they are held according to that key. For any segment   , also hold at each node: 

o The segment line equation of the form  ( )      . 

o The line equations for the segments           – to the right and left of the segment in this node according to the 

sorting (if    is the minimum/maximum according to the sorting, hold nil for the left/right neighbor segment 

equation, respectively). 

 

Following is a description of the query algorithm in detail, given some point     : 

If   is not in any of the regions, the algorithm returns false. Otherwise, if   is between segment    and    (such that    is to 

the left of   ), it returns (   ); if   is to the right of the rightmost segment   , it returns (    ), and to the left of the 

leftmost segment    - (    ). Denote the endpoints of all segments    as                 . 

 If     [   ], return false. 

 Let       

 Go down the tree constructed earlier, and at each node that contains the segment   : 

o Check if   is to the left of    by checking that  (                  )       

 If it is, check if it is contained in the region between      and    (by checking the angle as before with the 

remaining 3 edges of the region). If yes, return (     ). 

 If it’s not continue to the next node on the left subtree. 

𝑦    

𝑦    

𝑠  𝑠  𝑠3 𝑠4 𝑠5 𝑠6 𝑠𝑛 



Ariel Stolerman \ CS623 Winter 2012 Assignment #2  2 
  

o If it is not to the left of   : 

 Check if it is contained in the region between        . If yes, return (     ). 

 if not, continue to the next node on the right subtree. 

For the checks above, if it is an extreme point (   or   ), checking if it is to the left of    or to the right of    determines 

also whether those regions contain the point. 

Correctness: 

Since the segments are distinct, any region is a simple quadrilateral (or one-ended strip for    or   ), and for any two 

segments       such that                  ,    is completely to the left of   . Thus sorting the segments by their top  -

coordinate sufficiently orders the segments. If a point is not contained in the strip, the algorithm will immediately return 

false. Otherwise it must be contained in one of the regions, and when strolling down the tree, if it is to the left of some 

segment    then it must be to the left of all segments          , and the same for the right. Therefore eventually the 

containing region will be found. 

Running-time: 

Sorting and constructing the balanced tree is  (    ). In addition, any query will take at most  (   ) steps (since it is a 

balanced tree), and at each node there is a constant number of operations that need to be done to determine if   is in any 

of the left or right regions, or should the search continue (and in what direction). Therefore any query will take  (   ) 

time. 

 

2) 

Following is a description of a plane sweep algorithm to compute all intersection points between circles in a set   of   

circles. We address this as a  -axis sweep algorithm, i.e. we simulate running a line     where   (    ) (starting at 

  ). Also, each circle     is represented by its center   (   ) and radius   (and we may assume each is unique, 

otherwise it is easily checked). The algorithm follows the original plain sweep algorithm with the following changes: 

 The initial events in the event priority queue are the leftmost and rightmost points on each circle, i.e. (     )  

(     ). Each circle is represented by an equation of the form (   )  (   )    . 

 The status of the sweep line will be held in a balanced tree, and each circle will be held as 2 halves (arcs), each 

represented by the circle (center point and radius) and top / bottom (the split into halves is by the diameter parallel to 

the  -axis). 

o On insertion, both arcs are inserted as neighbors. 

o When checking events and updating the status, it might be that the two arcs will become not-neighbors. 

 If a start-circle event is encountered, its 2 arcs are inserted as neighbors into the status, and each of them is checked 

for intersection with their neighbors in the status (besides the 2 arcs themselves, who are initially neighbors). Calculate 

the distance    (     ) of the inserted circle centered in    and its neighbor in   : 

o If         the circles are distant from one another and there is no intersection point. 

o If   |     | one circle contains the other and there is no intersection point. 
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o If        , there is one intersection point on the line segment [     ] (distant by    from   ). Print it and 

continue (without adding it as an event to the queue). 

o If         there are 2 intersection points      . Let   be the point of intersection of the line segments      and 

    , then we get 4 right triangles                             and by a set of equations we can calculate 

     . We print both of them to the screen and add them both to the priority queue. 

 If an end-circle event is encountered, its 2 arcs are extracted from the status and their previous neighbors are checked 

for intersections with their new neighbors as described above. 

 If an intersection event is encountered, the two intersected arcs should be switched in the status, and intersection with 

their new neighbors are to be checked as described above. 

Correctness: 

Most of the correctness is derived from the original sweep algorithm. As for the changes: a circle becomes relevant once 

the sweep line first intersects it, which is on the circle’s leftmost point. It becomes irrelevant once the sweep line stops 

intersecting it. If two circles intersect, that will be found out when they are neighbors by at least 1 arc. When they intersect 

at only one point, no need to add that point as an event, since right before that point and right after it, they must have the 

same relation to each other (the left circle stays the other one’s left neighbor all along and vice versa; this can be proven 

more rigorously, showing that if that’s not the case we can always take a small  -environment around the intersection point 

for which it is true). If they intersect at 2 points, their neighbors before and after each of the intersection points may 

change, so these points must be added as events. It may be the case that both circles are printed as intersecting in those 2 

points twice, but that’s ok (also running-time wise). 

Running time: 

The running time doesn’t change asymptotically: checking intersection between 2 circles is still constant, and when there 

are 2 intersection points they are printed twice, increasing the   part by a factor of at most 2. Therefore the total running 

time stays  ((   )    ). 

 

3) 

Following is an example of a rectilinear polygon with   vertices that necessitates ⌈   ⌉ cameras to guard it: 

 

Clearly each rectangular piece of this polygon necessitates its own camera, thus any 4 vertices that make that piece need to 

be covered by one camera. The total number of cameras is then   of the number of vertices, as required. 

𝑐  
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4) 

The statement is false, as a dual graph of the triangulation of a monotone polygon may not be a chain, even when following 

the triangulation algorithm in the book (3.3, page 55). Consider the following example: 

 

Clearly the polygon is monotone with respect to the  -axis. The triangulation algorithm will draw diagonals for the first time 

from   (the two dashed blue diagonals), next from   (the 3 dashed red diagonals) and by that will finish the triangulation. 

However, the dual graph (in green) of that triangulation is not a chain, as the vertex   has degree 3. Note that the polygon 

above has a triangulation that derives a chain dual graph (crossing all diagonals possible from  ), but that is not the 

triangulation derived from the algorithm in the book. 

 

5) 

Following is an algorithm that determines whether a polygon   with   vertices is monotone with respect to any line, i.e. 

there exists some line   such that   is monotone with respect to  . 

The idea of the algorithm is to find a range of angles (a wedge) in which a slope of a legal line   (a line that the polygon can 

be monotone with respect to) can reside. For that purpose we need to look at any vertex of   with interior angle     , as 

those inner corners impose a restriction on the slope of any   as described above: the slope of  ’s perpendiculars must be in 

that range. The algorithm will run as follows: 

 Initialize a polar wedge      (i.e. a whole circle). 

 Run over each vertex    in the chain            describing   in order (consider the subscripts module  ): 

o If the  -interior angle              , denote its corresponding wedge    as the wedge between the two 

extensions of        and        towards inside  , and    – towards outside  : 
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o Update     (     ), and if   is empty, return false. 

 If   is still not empty after going over all vertices in  , return true. 

Correctness: 

Note that any interior angle      doesn’t impose anything on any candidate  . The slope that each interior angle      

imposes on such   is that its perpendiculars can have a slope only within      , otherwise    will break the monotonicity of 

  with respect to it. Therefore the intersection of all such    (starting at     , signifying there are initially no restrictions) 

expresses all restrictions together. Therefore if after going over all vertices   is still non-empty, we can pick a line   with 

perpendicular slope in that range, and we know   will be monotone with respect to it. 

Running time: 

Going over the entire chain, at each vertex we do a constant amount of work: 

 Checking the interior angle is constant using simple orientation tests. 

 Calculating    and    is also constant given the 3 consecutive vertices             . 

 Calculating the intersection   (     ) can be done in constant time, if   (and      ) is represented by a starting and 

ending angles. 

Therefore the total amount of work is  ( ), (efficient) as required. 

 


