Ariel Stolerman

Fundamentals:
Let p;, P2, P3 be points in E%:

¥ oy 1 >0, left
D(pup2aps) = %2 ¥2 1 =[< 0, right
x3 y3 1 = 0, collinear

Convex sets and hulls:

o Intersection of convex sets is convex.

e The convex hull of a set of points P is the
intersection of all convex sets containing P.

e In E? the convex hull is a simple polygon and
its vertices are in P.

Representation of a polygon: a CW / CCW chain

of vertices ordered on the circumference.

Graham’s Scan:

e Partition P to upper and lower sets by the
line from the rightmost to the leftmost.

e Sort the 2 sets by their x value.

e Walk each set, and add points that make a
right turn with the previous 2.

o |f found a left turn, pop previously added
points until the turn is right again.

P

@
#|Tle® o),

Running time:

e Sorting: O(nlgn)

e Each point is pushed once and popped at
most once: 0(n)

e Total: O(nlgn)

D&C (“Merge-Hull”):

e Sort points by their x value.

Divide: simple ~ 'Z—l division at each phase.

Merge:

e For two convex polygon A, B, we connect
them by upper and lower tangents.

e Take a the rightmost point of A, b the
leftmost of B, check tangency by orientation
ina,b.

e “March” a, b up/down for the upper/lower
tangent until done.

Running time:

e Sorting: O(nlgn)

e Each vertex is searched once on each merge
level.

e Total: O(nlgn)

Quick-Hull:

First phase:

e Find min and max x, y-wise to create a
boundary box (0(n)).

e Cross diagonals between them — every point
inside the generated supporting
quadrilateral is discarded (0(n)).

C€S623 Winter 2012 Midterm Notes

Second (recursive) phase:
e For each corner triangle with a, b as the 2
red vertices, pick ¢ out of the points in that
triangle:
o Maximize zabc
o Maximize the perpendicular from c to ab
o Close the triangle Aabc and eliminate any
points in it.
e Run recursively on the 2

outer triangles left.

-

Running time:

e 0(nlgn) expected, 0(n?) worst-case (when
all points reside on the boundary).

e T(n) =T(ny) +T(n,) + 0(n) where
n,, N, are the remaining points on each side.

Gift-Wrapping and Jarvis’s March:

o Pick the lowest y value point p,.

e Find the point that minimizes the angle and
is a left turn. If more than one is found, take
the farthest.

e Stop when reached p, again.

S

Running time:

0(hn) where h is the number of vertices on the

boundary. Worst case: 0(n?).

Chan’s algorithm:

e Creater = E] sets of m points each.

e Run Graham’s scan on each one, total:
r-0(mlgm) = 0(nlgm).

e Run Jarvis’s march, each time looking for the
tangent to all r convex groups. Tangent
takes O(lgm), for r groups, for all h nodes

on the boundary: O(hrlgm) = 0 (h—r:lg m)

PL:

How to pick m:

e Runaloopovert =1,2,...and pick
m= min{ZZt,n}.

e That squares the previous m on each
iteration.

o This process stops at 22° > h = ¢ = [Iglghl.

e The total running time: Y}5'" n2t =
n21*i8leh = o(nlgh).

Line Segment Intersection:

Sweep-line algorithm:

e Primitive operation: find s,t € [0,1] that
parameterize inner points in the segments
p,q. If p(s) = p(q) —they intersect.

Events:

e Sorted list of events be order they meet the
sweep line [.

e Endpoint events —the queue is initialized
with all.

e Intersection events: added on-the-fly

Sweep line status:

e Balanced tree of the current segments
intersecting [, sorted in order of intersection.

Event handling:

At each intersection test, if found — add as new

intersection event.

o Left endpoint: insert the new segment, test
intersection with its neighbors.

e Right endpoint: delete the segment, test
intersection of its previous neighbors (now
neighbors themselves).

e Intersection event: swap the segments’
position in the status, test intersection with
the new neighbors.

Running time:

e The queue has at most 2n + k events, k
being the number of intersections.

e Each operation:
0(g2n+k)) = _0(gn*) =0(gn)

k=0(n?)

e For every event we do a constant number
operations = total: 0((n +k)lg n)

Planar Graphs, Art Gallery Problem:

Planar straight line graph (PSLG):

e Graph in the plain with straight edges that
don’t intersect.

e Components: vertices, edges, faces.

e Convex subdivision: all faces are convex.

Planar graph:

Euler’s Condition:

e V—-E+F=2

o |[f the graph is disconnected and the number
of connected components is C:
V-E+F-C=1

* =
0 E<3(V—-2)
o F<2(V-2)

DCEL (doubly connected edge list):
e Vertices: store coordinates and incident
edges (that originate from them).
e Edges: points to twin, next, prev, origin
vertex, left face.
e Faces: pointer to one of its edges.
The Art Gallery Problem:
|n/3] is guaranteed to suffice:
e Lemma 1: Every n polygon hasn — 3
diagonals and n — 2 triangles:
o Breaking P with n vertices into two
polygons gives m; + m, = n + 2 vertices.
o Inductionim; —2+m, —2=n-—2
triangles in P.
o Similar with diagonals.
e Lemma 2: The triangulation graph of a
simple polygon is 3-colorable:
o Color the dual graph (tree with vertex
degree < 3) inductively:
o Remove all triangles (dual nodes) until
you get one, color it.
o Add the removed ones, coloring the
added vertex with the unused color.

o At least one color appears < |n/3] times,
place guards on those colors.

Ariel Stolerman

Polygon Triangulation:

Lemma: every simple polygon admits a

triangulation with n — 2 triangles:

e By induction, pick a convex corner gpr and
cross a qr. Ifitis not qr € P, cross a
diagonal pz, z being a vertex of P fartherst
from gr inside Aqpr.

e By induction each parthasn; —2,n, — 2
tirangles, thus Phasn, +n, —4=n+2 —
4 = n — 2 triangles.

Monotone polygon:

e P is monotone w.r.t. line [if any orthogonal
to lintersects P’s boundary in < 2 points.

e y-monotone: when we walk from topmost
vertex down on each of the chains, it’s
always a horizontal move down.

e Turn vertices: the direction of the walk
switches from down to up (or vice versa).

—— | Stortvertex |

Merge vertex
Both neighbors ace above it
Interior angle > 180°

Need to add diagonals down

\ Split vertex
\ Both neighbors ace below it
Interior angle > 180°

Need to add diagonals up

—

B e |

Lemma: a polygon is y-monotone if it has no

split/merge vertices.

e Suppose it’s not, then an orthogonal
intersects P at p, q,r. Go up on the chain
from q until it hits r.

o If p # 1, take the topmost vertex on this trail
- split. Otherwise go from g downwards until
some intersection r’ and r’ # p since
they’re not on the same component.

e The lowest vertex between g, ' is a merge
vertex.

Phase #1: Split P to monotone pieces:

e There are edges of P, e,, e;,, on each side of
a split vertex v.

e Helper(e,): maintains the current vertex
that is visible by any v between e, ej,.
It is the lowest horizontally visible to the left
of e, on the chain between e, e;,.

" -

/ »
~ a -’ . b «
,.\'Y(o:;-\\ - 'ﬁ"‘
VA TR G SN
£ A | N,
o ’U -
p—_y A
-2
2|/ k) /
o /. -4
® [7] \ / o
= \ <
2P HO PP /o @
o F >
5 2
[
L
o
W

e On split vertices v, cross v — helper(e,)

Events:

e Sorted list of P’s vertices in y-descending
order.

Status:

o List of edges that intersect the sweep line
from right to left.

e Balanced tree of e,’s: edges that have P’s
interior to the left of them, keys to helper.

Event processing:

1. Split: find e, connect v to helper(e), add
e;, e, the status, set helper(e) =
helper(e,) = v

2. Merge: find and delete ey, e,, set
helper(e) = v

C€S623 Winter 2012 Midterm Notes

3. Start: insert e, e, to the status and set
helper(e,) = v

4. End: delete e, e, from the status

5. Right-chain vertex: delete e; and add e, to
the status, set helper(e,) = v

6. Left-chain vertex: delete e, and add e, to
the status, set helper(e) = v

'1\/ | 2

: ‘ el e2
<X o <o
| e e2
I .
3 4
el e2
5 o 1\ 6
elf
< < ®
e2 e

\

Merge vertices:

e Either do the same upside-down, or:

e At any helper update, if the old helper was a
merge vertex, connect it to the new helper
vertex.

Running time:

e Each event costs O(lgn), total of n events.

e Total: O(nlgn).

Phase #2: Triangulating the monotone pieces:

e Start with the y-sorted vertices of the
polygon (0(n) by merging the two chains).

e Hold a stack that accumulates vertices that
await for diagonals (a reflex chain), and an
indicator if that’s on the L or R chain.

e Denote u the current topmost vertex that
everything above it is triangulated, v;_; the
one just processed and v; the one about to
be processed:

o v; is on the opposite of v;_;: cross
diagonals from v; to all vertices on the
reflex chain v;_; = u (expect u). v;_,
becomes u, the reflex chain contains the

edge v;_,v;.
X

v

o v; is on the same chain as v;_;: walk back
on the chain and cross diagonals to visible
vertices. May or may not include vertices.
At the end v; is the new endpoint of the

chain and v; — -+ = u is reflex again.
. ,

AN
\‘\\\\\\
. /<\ AN \

(3] <_\\l \\\\ v,

% ¥

Running time:

e Merging both chains to a sorted one is 0(n)
o The orientation (visibility) test is constant, as

adding a diagonal (in a DCEL).
e There are n — 3 diagonals = total: 0(n)

