
Ariel Stolerman CS623 Winter 2012 Midterm Notes

Fundamentals:
Let be points in :

 () |

| {

Convex sets and hulls:
 Intersection of convex sets is convex.

 The convex hull of a set of points is the
intersection of all convex sets containing .

 In the convex hull is a simple polygon and
its vertices are in .

Representation of a polygon: a CW / CCW chain
of vertices ordered on the circumference.
Graham’s Scan:

 Partition to upper and lower sets by the
line from the rightmost to the leftmost.

 Sort the 2 sets by their value.

 Walk each set, and add points that make a
right turn with the previous 2.

 If found a left turn, pop previously added
points until the turn is right again.

Running time:

 Sorting: ()

 Each point is pushed once and popped at
most once: ()

 Total: ()
D&C (“Merge-Hull”):

 Sort points by their value.

Divide: simple

 division at each phase.

Merge:

 For two convex polygon , we connect
them by upper and lower tangents.

 Take the rightmost point of , the
leftmost of , check tangency by orientation
in .

 “March” up/down for the upper/lower
tangent until done.

Running time:

 Sorting: ()

 Each vertex is searched once on each merge
level.

 Total: ()
Quick-Hull:
First phase:

 Find min and max -wise to create a
boundary box (()).

 Cross diagonals between them – every point
inside the generated supporting
quadrilateral is discarded (()).

Second (recursive) phase:

 For each corner triangle with as the 2
red vertices, pick out of the points in that
triangle:
o Maximize
o Maximize the perpendicular from to

 Close the triangle and eliminate any
points in it.

 Run recursively on the 2 outer triangles left.

Running time:

 () expected, () worst-case (when
all points reside on the boundary).

 () () () () where
 are the remaining points on each side.

Gift-Wrapping and Jarvis’s March:

 Pick the lowest value point .

 Find the point that minimizes the angle and
is a left turn. If more than one is found, take
the farthest.

 Stop when reached again.

Running time:
 () where is the number of vertices on the
boundary. Worst case: ().
Chan’s algorithm:

 Create ⌈

⌉ sets of points each.

 Run Graham’s scan on each one, total:
 () ().

 Run Jarvis’s march, each time looking for the
tangent to all convex groups. Tangent
takes (), for groups, for all nodes

on the boundary: () (

).

How to pick :

 Run a loop over and pick

 {
 }.

 That squares the previous on each
iteration.

 This process stops at
 ⌈ ⌉.

 The total running time: ∑

 ().

Line Segment Intersection:
Sweep-line algorithm:

 Primitive operation: find [] that
parameterize inner points in the segments
 . If () () – they intersect.

Events:

 Sorted list of events be order they meet the
sweep line .

 Endpoint events – the queue is initialized
with all.

 Intersection events: added on-the-fly
Sweep line status:

 Balanced tree of the current segments
intersecting , sorted in order of intersection.

Event handling:
At each intersection test, if found – add as new
intersection event.

 Left endpoint: insert the new segment, test
intersection with its neighbors.

 Right endpoint: delete the segment, test
intersection of its previous neighbors (now
neighbors themselves).

 Intersection event: swap the segments’
position in the status, test intersection with
the new neighbors.

Running time:

 The queue has at most events,
being the number of intersections.

 Each operation:
 (())

 ()
 () ()

 For every event we do a constant number

operations total: (())

Planar Graphs, Art Gallery Problem:
Planar straight line graph (PSLG):

 Graph in the plain with straight edges that
don’t intersect.

 Components: vertices, edges, faces.

 Convex subdivision: all faces are convex.
Planar graph:
Euler’s Condition:

 If the graph is disconnected and the number

of connected components is :

o ()
o ()

DCEL (doubly connected edge list):

 Vertices: store coordinates and incident
edges (that originate from them).

 Edges: points to twin, next, prev, origin
vertex, left face.

 Faces: pointer to one of its edges.
The Art Gallery Problem:
⌊ ⌋ is guaranteed to suffice:

 Lemma 1: Every polygon has
diagonals and triangles:
o Breaking with vertices into two

polygons gives vertices.
o Induction:

triangles in .
o Similar with diagonals.

 Lemma 2: The triangulation graph of a
simple polygon is 3-colorable:
o Color the dual graph (tree with vertex

degree) inductively:
o Remove all triangles (dual nodes) until

you get one, color it.
o Add the removed ones, coloring the

added vertex with the unused color.

o At least one color appears ⌊ ⌋ times,

place guards on those colors.

Ariel Stolerman CS623 Winter 2012 Midterm Notes

Polygon Triangulation:
Lemma: every simple polygon admits a
triangulation with triangles:

 By induction, pick a convex corner and
cross a . If it is not , cross a
diagonal , being a vertex of fartherst
from inside .

 By induction each part has
tirangles, thus has
 triangles.

Monotone polygon:

 is monotone w.r.t. line if any orthogonal
to intersects ’s boundary in points.

 -monotone: when we walk from topmost
vertex down on each of the chains, it’s
always a horizontal move down.

 Turn vertices: the direction of the walk
switches from down to up (or vice versa).

Lemma: a polygon is -monotone if it has no
split/merge vertices.

 Suppose it’s not, then an orthogonal
intersects at . Go up on the chain
from until it hits .

 If , take the topmost vertex on this trail
- split. Otherwise go from downwards until
some intersection and since
they’re not on the same component.

 The lowest vertex between is a merge
vertex.

Phase #1: Split to monotone pieces:

 There are edges of , , on each side of
a split vertex .

 (): maintains the current vertex
that is visible by any between .
It is the lowest horizontally visible to the left
of on the chain between .

 On split vertices , cross ()
Events:

 Sorted list of ’s vertices in -descending
order.

Status:

 List of edges that intersect the sweep line
from right to left.

 Balanced tree of ’s: edges that have ’s
interior to the left of them, keys to .

Event processing:
1. Split: find , connect to (), add

 the status, set ()
 ()

2. Merge: find and delete , set
 ()

3. Start: insert to the status and set
 ()

4. End: delete from the status
5. Right-chain vertex: delete and add to

the status, set ()
6. Left-chain vertex: delete and add to

the status, set ()

Merge vertices:

 Either do the same upside-down, or:

 At any helper update, if the old helper was a
merge vertex, connect it to the new helper
vertex.

Running time:

 Each event costs (), total of events.

 Total: ().
Phase #2: Triangulating the monotone pieces:

 Start with the -sorted vertices of the
polygon (() by merging the two chains).

 Hold a stack that accumulates vertices that
await for diagonals (a reflex chain), and an
indicator if that’s on the L or R chain.

 Denote the current topmost vertex that
everything above it is triangulated, the
one just processed and the one about to
be processed:
o is on the opposite of : cross

diagonals from to all vertices on the
reflex chain (expect).
becomes , the reflex chain contains the
edge .

o is on the same chain as : walk back

on the chain and cross diagonals to visible
vertices. May or may not include vertices.
At the end is the new endpoint of the
chain and is reflex again.

Running time:

 Merging both chains to a sorted one is ()

 The orientation (visibility) test is constant, as
adding a diagonal (in a DCEL).

 There are diagonals total: ()

