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Fundamentals: 
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Convex sets and hulls: 
 Intersection of convex sets is convex. 

 The convex hull of a set of points   is the 
intersection of all convex sets containing  . 

 In    the convex hull is a simple polygon and 
its vertices are in  . 

Representation of a polygon: a CW / CCW chain 
of vertices ordered on the circumference. 
Graham’s Scan: 

 Partition   to upper and lower sets by the 
line from the rightmost to the leftmost. 

 Sort the 2 sets by their   value. 

 Walk each set, and add points that make a 
right turn with the previous 2. 

 If found a left turn, pop previously added 
points until the turn is right again. 

 
Running time: 

 Sorting:  (    ) 

 Each point is pushed once and popped at 
most once:  ( ) 

 Total:  (    ) 
D&C (“Merge-Hull”): 

 Sort points by their   value. 

Divide: simple  
 

 
 division at each phase. 

Merge: 

 For two convex polygon    , we connect 
them by upper and lower tangents. 

 Take   the rightmost point of  ,   the 
leftmost of  , check tangency by orientation 
in    . 

 “March”     up/down for the upper/lower 
tangent until done. 

 
 
Running time: 

 Sorting:  (    ) 

 Each vertex is searched once on each merge 
level. 

 Total:  (    ) 
Quick-Hull: 
First phase: 

 Find min and max    -wise to create a 
boundary box ( ( )). 

 Cross diagonals between them – every point 
inside the generated supporting 
quadrilateral is discarded ( ( )). 

 
 

Second (recursive) phase: 

 For each corner triangle with     as the 2 
red vertices, pick   out of the points in that 
triangle: 
o Maximize      
o Maximize the perpendicular from   to    

 Close the triangle      and eliminate any 
points in it. 

 Run recursively on the 2 outer triangles left. 

 
Running time: 

  (    ) expected,  (  ) worst-case (when 
all points reside on the boundary). 

   ( )   (  )   (  )   ( ) where 
      are the remaining points on each side. 

Gift-Wrapping and Jarvis’s March: 

 Pick the lowest   value point   . 

 Find the point that minimizes the angle and 
is a left turn. If more than one is found, take 
the farthest. 

 Stop when reached    again. 

 
Running time: 
 (  ) where   is the number of vertices on the 
boundary. Worst case:  (  ). 
Chan’s algorithm: 

 Create   ⌈
 

 
⌉ sets of   points each. 

 Run Graham’s scan on each one, total: 
   (    )   (    ). 

 Run Jarvis’s march, each time looking for the 
tangent to all   convex groups. Tangent 
takes  (   ), for   groups, for all   nodes 

on the boundary:  (     )   (
  

 
   ). 

 
How to pick  : 

 Run a loop over         and pick 

     {   
  }. 

 That squares the previous   on each 
iteration. 

 This process stops at    
     ⌈     ⌉. 

 The total running time: ∑         
    

           (    ). 

Line Segment Intersection: 
Sweep-line algorithm: 

 Primitive operation: find     [   ] that 
parameterize inner points in the segments 
   . If  ( )   ( ) – they intersect. 

Events: 

 Sorted list of events be order they meet the 
sweep line  . 

 Endpoint events – the queue is initialized 
with all. 

 Intersection events: added on-the-fly 
Sweep line status: 

 Balanced tree of the current segments 
intersecting  , sorted in order of intersection. 

Event handling: 
At each intersection test, if found – add as new 
intersection event. 

 Left endpoint: insert the new segment, test 
intersection with its neighbors. 

 Right endpoint: delete the segment, test 
intersection of its previous neighbors (now 
neighbors themselves). 

 Intersection event: swap the segments’ 
position in the status, test intersection with 
the new neighbors. 

Running time: 

 The queue has at most      events,   
being the number of intersections. 

 Each operation: 
 (  (    ))  

   (  )
 (    )   (   ) 

 For every event we do a constant number 

operations   total:  ((   )    ) 

Planar Graphs, Art Gallery Problem: 
Planar straight line graph (PSLG): 

 Graph in the plain with straight edges that 
don’t intersect. 

 Components: vertices, edges, faces. 

 Convex subdivision: all faces are convex. 
Planar graph: 
Euler’s Condition: 

         
 If the graph is disconnected and the number 

of connected components is  : 
          

   
o    (   ) 
o    (   ) 

DCEL (doubly connected edge list): 

 Vertices: store coordinates and incident 
edges (that originate from them). 

 Edges: points to twin, next, prev, origin 
vertex, left face. 

 Faces: pointer to one of its edges. 
The Art Gallery Problem: 
⌊   ⌋ is guaranteed to suffice: 

 Lemma 1: Every   polygon has     
diagonals and     triangles: 
o Breaking   with   vertices into two 

polygons gives           vertices. 
o Induction:               

triangles in  . 
o Similar with diagonals. 

 Lemma 2: The triangulation graph of a 
simple polygon is 3-colorable: 
o Color the dual graph (tree with vertex 

degree   ) inductively: 
o Remove all triangles (dual nodes) until 

you get one, color it. 
o Add the removed ones, coloring the 

added vertex with the unused color. 

 
o At least one color appears  ⌊   ⌋ times, 

place guards on those colors. 
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Polygon Triangulation: 
Lemma: every simple polygon admits a 
triangulation with     triangles: 

 By induction, pick a convex corner     and 
cross a   . If it is not     , cross a 
diagonal   ,   being a vertex of   fartherst 
from    inside     . 

 By induction each part has           
tirangles, thus   has             
      triangles. 

Monotone polygon: 

   is monotone w.r.t. line   if any orthogonal 
to   intersects  ’s boundary in    points. 

  -monotone: when we walk from topmost 
vertex down on each of the chains, it’s 
always a horizontal move down. 

 Turn vertices: the direction of the walk 
switches from down to up (or vice versa). 

 
Lemma: a polygon is  -monotone if it has no 
split/merge vertices. 

 Suppose it’s not, then an orthogonal 
intersects   at      . Go up on the chain 
from   until it hits  . 

 If    , take the topmost vertex on this trail 
- split. Otherwise go from   downwards until 
some intersection    and      since 
they’re not on the same component. 

 The lowest vertex between      is a merge 
vertex. 

 
Phase #1: Split   to monotone pieces: 

 There are edges of  ,      , on each side of 
a split vertex  . 

       (  ): maintains the current vertex 
that is visible by any   between      . 
It is the lowest horizontally visible to the left 
of    on the chain between      . 

 
 On split vertices  , cross         (  ) 
Events: 

 Sorted list of  ’s vertices in  -descending 
order. 

Status: 

 List of edges that intersect the sweep line 
from right to left. 

 Balanced tree of   ’s: edges that have  ’s 
interior to the left of them, keys to       . 

Event processing: 
1. Split: find  , connect   to       ( ), add 

      the status, set       ( )  
      (  )    

2. Merge: find and delete      , set 
      ( )    

3. Start: insert       to the status and set 
      (  )    

4. End: delete       from the status 
5. Right-chain vertex: delete    and add    to 

the status, set       (  )    
6. Left-chain vertex: delete    and add    to 

the status, set       ( )    

 
Merge vertices: 

 Either do the same upside-down, or: 

 At any helper update, if the old helper was a 
merge vertex, connect it to the new helper 
vertex. 

Running time: 

 Each event costs  (   ), total of   events. 

 Total:  (    ). 
Phase #2: Triangulating the monotone pieces: 

 Start with the  -sorted vertices of the 
polygon ( ( ) by merging the two chains). 

 Hold a stack that accumulates vertices that 
await for diagonals (a reflex chain), and an 
indicator if that’s on the L or R chain. 

 Denote   the current topmost vertex that 
everything above it is triangulated,      the 
one just processed and    the one about to 
be processed: 
o    is on the opposite of     : cross 

diagonals from    to all vertices on the 
reflex chain        (expect  ).      
becomes  , the reflex chain contains the 
edge       . 

 
o    is on the same chain as     : walk back 

on the chain and cross diagonals to visible 
vertices. May or may not include vertices. 
At the end    is the new endpoint of the 
chain and        is reflex again. 

 
 

Running time: 

 Merging both chains to a sorted one is  ( ) 

 The orientation (visibility) test is constant, as 
adding a diagonal (in a DCEL). 

 There are     diagonals   total:  ( ) 
 


