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Assignment 1, question 5) 

Let   be an  -sided convex polygon contained within a closed circular disk  . Following is a linear time algorithm that either 

finds two points           such that for each point   on the boundary of  ,   is visible to at least one of      , or 

returns that no such pair exists. 

First, we show that if such points exist, they may be assumed to lie on the boundary of  . Assume there exist such two 

points      . If they are on the boundary of  , we are done. If one of them, say   , is not on the boundary of  , then let    

be the left-most point on the boundary of   that is visible from    and    – the right-most. Then we know that the 

boundary of   between    and    is visible from   . We can then take the point   
  which is the intersection of the 

perpendicular from    to the line      and the boundary of   instead of   , as any   on the boundary of   that is visible 

from    is visible from   
 : 

 

Assume that   is visible from    but not from   
 , then the line   

   intersects with  , meaning that at some point it 

intersects with the boundary of   (between      ). But since the triangle        is fully contained in     
   , this must 

mean that either the boundary of   intersects with     or that     is fully contained in   – in both cases, a contradiction 

to the visibility of   from   . Therefore all points visible from   are visible from   
  which is on the boundary of  , so we 

can assume that if a pair       as described above exists, then there must exist some pair   
    

  on the boundary of   

with the same visibility. 
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Now we show how to subdivide the boundary of   in  ( ) time into circular arc intervals such that all the point within each 

interval “see” the same edges of  : 

1. “Stretch” all the edges of   to intersect with the boundary of   in clockwise direction, denoting the left points    and 

the right points   , for all        (such that the direction from    to    on the boundary of   is clockwise). 

2. Flat the boundary of   on a line, such that    is the 0-point, and since it’s originally a circle circumference, it’s a clock 

arithmetic such that after the last point    appears again. Since we have   edges in  , we have    intersection points 

(that may overlap), thus a division of the boundary of   into at most    arcs. 

3. Note that each point on an arc that is bounded between    and    (clockwise direction between    and   ) can “see” all 

points on the corresponding edge of  , and every intersection of   such arcs derives an arc that “sees” all points on all 

the corresponding   edges of  . 

 

We can now mark each arc with the total number of edges that can be seen from any point on it: starting with    and initial 

value 0, any arc that goes from    to     (     ) or to some    is marked with         ; any arc that goes from    to 

    (     ) or to some    is marked with         . We set the initial value as follows: from    proceed clockwise until 

the first    encountered. Then go counterclockwise from    and count the number of  -values encountered up until   , 

included. This number is to be set as the initial value. If some vertex of   is on the boundary of  , this point will be both    

and   , for some    , and it will follow neither increase nor decrease in the value. 

Eventually we get a sequence of     arcs, each marked with the total number of edges of   it “sees”, and the process of 

creating that sequence takes linear time. 

Finally, to find the points       on the boundary of   (or return that no such pair exists) it is sufficient to first find the arc 

with the largest value (or one of them, if there is more than one), which will have to be between 2 points    and    (since 

after    the value decreases by 1) – which takes linear time. Denote that arc’s value   . Then continue clockwise on the 
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boundary of   until    (which will appear before   , see explanation for that under the correctness section). Then continue 

clockwise until reaching    and find the arc with the largest value in that sector ([     ]), denoted   . This part takes linear 

time as well. If        , return: 

4.       *                         + 

5.       *                         + 

Otherwise return false, denoting that no such pair       exists. 

Correctness of the last part: 

First, due to the way we draw the line segments ,     -, which bound the polygon to the right of the vector      , it 

cannot be that after    we will first encounter    and only then    (advancing clockwise), since then it “breaks” the polygon 

in half. Therefore    will be encountered after    before reaching   . This also means ,     - and [     ] intersect. 

Second, it is sufficient to take the arc with maximal value (denoted      , clockwise) and its “complement” (i.e. an arc 

between      , clockwise) since if there is a solution, it means we can split the polygon by crossing some line between 2 

of its vertices such that its boundary is split into two “halves” – the right and the left of that line, which can be seen by 2 

points on  . The maximum value arc will surely see one of those halves. 

Lastly, each point on the arc (     ) with the largest value “sees” all segments that can be seen between    and   , 

clockwise. Therefore it is sufficient to find another point that will cover all segments seen between    and   , clockwise. 

Moreover, the segments seen in the first are by definition of the  ’s and  ’s distinct from the segments seen in the second. 

Thus if the sum of both equals the total number of segments, it is assured that all   segments (  edges of  ) are visible by 

one of the two selected points. 

 

Assignment 2, question 6) 

Following is an efficient algorithm that given a convex polygon   with   vertices computes a triangulation that has stabbing 

number  (   ): 

1. Let   be represented by the chain            and let    ⌊   ⌋, then for         do: 

1.1. Starting at    and ending at   , cross diagonals between consecutive points on the chain (in the direction 

       ) jumping over    points every step. For instance, for     cross: (    3) ( 3  5)   (       ); for 

    cross: (    5) ( 5   )   (   4   ) and so on. 

2. Run the algorithm recursively over the polygon represented by the chain                . 

Correctness: 

First note that when choosing    ⌊   ⌋, since we jump in steps of    we are guaranteed that the logarithmic division of 

the part of the polygon handled at step 1 will be complete, i.e.    will be connected eventually to   . Furthermore, no 

diagonal we cross ever crosses another one: for each   the diagonals never start at a point in between 2 points that were 

previously connected; and since we expand the jump step by a factor of 2 at each phase of 1.1, no diagonal at phase   

between any two points we connect       will ever cross any of the diagonals crossed between points in the range 

        (basically that’s a proof by induction). 
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Next we show that we are given a proper triangulation: for any chunk of the polygon that is handled at phase 1, every 

diagonal we cross between closes a triangle with 2 diagonals that were crossed at the previous phase (and for    : closes 

a triangle with two consecutive edges of the polygon), thus inductively a complete triangulation is formed for that polygon 

chunk. Since any   can be represented as   ∑     
   , for some         (i.e. a sum of powers of 2), the recursive 

algorithm covers the entire polygon   completely (where phase 1 runs on each of the chunks; this can also be more 

rigorously proven by proper induction on the number of chunks   will be divided into). 

As last step we show that any line segment   interior to   crosses at most  (   ) diagonals: if   starts at any point on an 

edge        of  , it may cross at most 1 diagonal that leaves    and jumps 2 points, at most 1 diagonal that leaves    and 

jumps 4 points, …, and at most 1 diagonal that starts at    and jumps        vertices. The same is true for the edge on 

which the ending point of   lies at. Therefore the maximum number of diagonal   may cross is  (   ), as required. 

Running time: 

The running time can be determined by the largest chunk of the polygon, as the division is by powers of 2 and we know that 

the largest chunk with    ⌊   ⌋ vertices, will have at most     vertices in all other chunks altogether. Therefore, for 

simplicity, we will address the case where    . The number of diagonals we cross is: 
 

 
 diagonals that jump over 1 point, 

 

  
 diagonals that jump over 3 points, …, 

 

 
   diagonal that jumps over all points in between    and   . The total number 

of diagonals is therefore ∑
 

  
   
      ∑

 

  
   
      

→        asymptotically the total number of diagonals crossed will be  , 

which determines the total complexity, which is linear:  ( ). 

The worst-case running time is  ( ), as the number of diagonals crossed will always be     anyway (proved in class), and 

for each diagonal we do a constant number of operations, which is basically crossing it. Calculations on partitioning the 

polygon into chunks with power of 2 nodes and calculating steps is linear, given the chain is represented by an array 

(where any fetch operation is  ( )). 

 

 

Step size 2 

Step size 4 

Step size 8 

Simulation for 1 chunk of size 8: 


