
Ariel Stolerman \ CS623 Winter 2012 Extra Credit (Midterm) 1

CS623 Winter 2012 \ Extra Credit (Midterm)

Ariel Stolerman

Assignment 1, question 5)

Let be an -sided convex polygon contained within a closed circular disk . Following is a linear time algorithm that either

finds two points such that for each point on the boundary of , is visible to at least one of , or

returns that no such pair exists.

First, we show that if such points exist, they may be assumed to lie on the boundary of . Assume there exist such two

points . If they are on the boundary of , we are done. If one of them, say , is not on the boundary of , then let

be the left-most point on the boundary of that is visible from and – the right-most. Then we know that the

boundary of between and is visible from . We can then take the point
 which is the intersection of the

perpendicular from to the line and the boundary of instead of , as any on the boundary of that is visible

from is visible from
 :

Assume that is visible from but not from
 , then the line

 intersects with , meaning that at some point it

intersects with the boundary of (between). But since the triangle is fully contained in
 , this must

mean that either the boundary of intersects with or that is fully contained in – in both cases, a contradiction

to the visibility of from . Therefore all points visible from are visible from
 which is on the boundary of , so we

can assume that if a pair as described above exists, then there must exist some pair

 on the boundary of

with the same visibility.

𝑞

𝑞

𝑤

𝑤

Ariel Stolerman \ CS623 Winter 2012 Extra Credit (Midterm) 2

Now we show how to subdivide the boundary of in () time into circular arc intervals such that all the point within each

interval “see” the same edges of :

1. “Stretch” all the edges of to intersect with the boundary of in clockwise direction, denoting the left points and

the right points , for all (such that the direction from to on the boundary of is clockwise).

2. Flat the boundary of on a line, such that is the 0-point, and since it’s originally a circle circumference, it’s a clock

arithmetic such that after the last point appears again. Since we have edges in , we have intersection points

(that may overlap), thus a division of the boundary of into at most arcs.

3. Note that each point on an arc that is bounded between and (clockwise direction between and) can “see” all

points on the corresponding edge of , and every intersection of such arcs derives an arc that “sees” all points on all

the corresponding edges of .

We can now mark each arc with the total number of edges that can be seen from any point on it: starting with and initial

value 0, any arc that goes from to () or to some is marked with ; any arc that goes from to

 () or to some is marked with . We set the initial value as follows: from proceed clockwise until

the first encountered. Then go counterclockwise from and count the number of -values encountered up until ,

included. This number is to be set as the initial value. If some vertex of is on the boundary of , this point will be both

and , for some , and it will follow neither increase nor decrease in the value.

Eventually we get a sequence of arcs, each marked with the total number of edges of it “sees”, and the process of

creating that sequence takes linear time.

Finally, to find the points on the boundary of (or return that no such pair exists) it is sufficient to first find the arc

with the largest value (or one of them, if there is more than one), which will have to be between 2 points and (since

after the value decreases by 1) – which takes linear time. Denote that arc’s value . Then continue clockwise on the

𝑎

𝑏

𝑎

𝑎3

𝑎4

𝑏

𝑏3

𝑏4
Edge visibility:

Edge visibility:

Ariel Stolerman \ CS623 Winter 2012 Extra Credit (Midterm) 3

boundary of until (which will appear before , see explanation for that under the correctness section). Then continue

clockwise until reaching and find the arc with the largest value in that sector ([]), denoted . This part takes linear

time as well. If , return:

4. * +

5. * +

Otherwise return false, denoting that no such pair exists.

Correctness of the last part:

First, due to the way we draw the line segments , -, which bound the polygon to the right of the vector , it

cannot be that after we will first encounter and only then (advancing clockwise), since then it “breaks” the polygon

in half. Therefore will be encountered after before reaching . This also means , - and [] intersect.

Second, it is sufficient to take the arc with maximal value (denoted , clockwise) and its “complement” (i.e. an arc

between , clockwise) since if there is a solution, it means we can split the polygon by crossing some line between 2

of its vertices such that its boundary is split into two “halves” – the right and the left of that line, which can be seen by 2

points on . The maximum value arc will surely see one of those halves.

Lastly, each point on the arc () with the largest value “sees” all segments that can be seen between and ,

clockwise. Therefore it is sufficient to find another point that will cover all segments seen between and , clockwise.

Moreover, the segments seen in the first are by definition of the ’s and ’s distinct from the segments seen in the second.

Thus if the sum of both equals the total number of segments, it is assured that all segments (edges of) are visible by

one of the two selected points.

Assignment 2, question 6)

Following is an efficient algorithm that given a convex polygon with vertices computes a triangulation that has stabbing

number ():

1. Let be represented by the chain and let ⌊ ⌋, then for do:

1.1. Starting at and ending at , cross diagonals between consecutive points on the chain (in the direction

) jumping over points every step. For instance, for cross: (3) (3 5) (); for

 cross: (5) (5) (4) and so on.

2. Run the algorithm recursively over the polygon represented by the chain .

Correctness:

First note that when choosing ⌊ ⌋, since we jump in steps of we are guaranteed that the logarithmic division of

the part of the polygon handled at step 1 will be complete, i.e. will be connected eventually to . Furthermore, no

diagonal we cross ever crosses another one: for each the diagonals never start at a point in between 2 points that were

previously connected; and since we expand the jump step by a factor of 2 at each phase of 1.1, no diagonal at phase

between any two points we connect will ever cross any of the diagonals crossed between points in the range

 (basically that’s a proof by induction).

Ariel Stolerman \ CS623 Winter 2012 Extra Credit (Midterm) 4

Next we show that we are given a proper triangulation: for any chunk of the polygon that is handled at phase 1, every

diagonal we cross between closes a triangle with 2 diagonals that were crossed at the previous phase (and for : closes

a triangle with two consecutive edges of the polygon), thus inductively a complete triangulation is formed for that polygon

chunk. Since any can be represented as ∑
 , for some (i.e. a sum of powers of 2), the recursive

algorithm covers the entire polygon completely (where phase 1 runs on each of the chunks; this can also be more

rigorously proven by proper induction on the number of chunks will be divided into).

As last step we show that any line segment interior to crosses at most () diagonals: if starts at any point on an

edge of , it may cross at most 1 diagonal that leaves and jumps 2 points, at most 1 diagonal that leaves and

jumps 4 points, …, and at most 1 diagonal that starts at and jumps vertices. The same is true for the edge on

which the ending point of lies at. Therefore the maximum number of diagonal may cross is (), as required.

Running time:

The running time can be determined by the largest chunk of the polygon, as the division is by powers of 2 and we know that

the largest chunk with ⌊ ⌋ vertices, will have at most vertices in all other chunks altogether. Therefore, for

simplicity, we will address the case where . The number of diagonals we cross is:

 diagonals that jump over 1 point,

 diagonals that jump over 3 points, …,

 diagonal that jumps over all points in between and . The total number

of diagonals is therefore ∑

 ∑

→ asymptotically the total number of diagonals crossed will be ,

which determines the total complexity, which is linear: ().

The worst-case running time is (), as the number of diagonals crossed will always be anyway (proved in class), and

for each diagonal we do a constant number of operations, which is basically crossing it. Calculations on partitioning the

polygon into chunks with power of 2 nodes and calculating steps is linear, given the chain is represented by an array

(where any fetch operation is ()).

Step size 2

Step size 4

Step size 8

Simulation for 1 chunk of size 8:

