Linear Models for Classification

Regression: last week we talked about linear regression that we try to fit.

Classification Goal:

Take a *D*-dimensional vector x and assign it one of K discrete classes C_k (k = 1, ..., K).

The input space is divided into decision regions bounded by decision boundaries.

Linear model for classification: decision surfaces define (D-1)-dimensional hyperplanes.

<u>1-of-K coding</u>: $t = (0,1,0,0,0)^T$ – meaning the class chosen is 2.

Activation function:

$$y(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)$$

And this function will give us the class of x.

Discriminant function

Directly model the activation function. E.g. for binary classification, the function will be the hyperplane separating 0 and 1.

Say we have the input space with points indicating inputs.

A line y(x) is the <u>decision line</u>, and in the discriminant case:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

Assume there are x_a, x_b that lay on the line, then they satisfy a set of linear equations:

$$y(x_a) = \mathbf{w}^T x_a + w_0 = 0$$

$$y(x_b) = \mathbf{w}^T x_b + w_0 = 0$$

$$\Rightarrow y(x_a) - y(x_b) = \mathbf{w}^T (x_a - x_b)$$

Therefore w – the vector of weights – is going to be perpendicular to the decision line.

Now assume a single point x lays on the line, then:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0 \Rightarrow \mathbf{w}^T \mathbf{x} = -w_0$$

Then:

$$\frac{\boldsymbol{w}^T \boldsymbol{x}}{|\boldsymbol{w}|} = -\frac{w_0}{|\boldsymbol{w}|}$$

Say we have some point x not on the line, then it can be written as:

$$x = x_{\perp} + r \frac{w}{|w|}$$

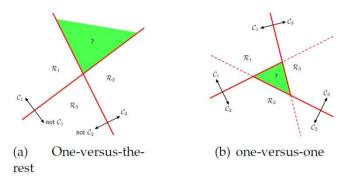
Where x_{\perp} is the projection of the point onto the line in a perpendicular direction (the shortest projection).

And now:

$$y(x) = y\left(x_{\perp} + r\frac{w}{|w|}\right) = w^{T}\left(x_{\perp} + r\frac{w}{|w|}\right) = w^{T}x_{\perp} + r\frac{w^{T}w}{|w|} + w_{0} = r\frac{w^{T}w}{|w|} \Rightarrow r = \frac{y(x)}{|w|}$$

With a single line it's a binary classification.

Multiple classes:



- a. Find the line that best separates one class vs. the others. The obvious problem with that is that we will have regions that we don't really know how to assign a class in them (the green zone in the figure).
- b. All-pairs lines, a total of $\binom{K}{2}$ lines. Then we again get a green "unknown" region.

We will use K different discriminant functions:

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

And assign the class for the k that satisfies $k = argmax y_k(x)$.

Least Squares classification

Each class C_k is described by its own linear model: $y_l(x) = w_k^T x + w_{k0}$

$$y(x) = \widetilde{W}^T \widetilde{x}$$

Given a training data set $\{x_n, t_n\}_{n=1}^N$, sum-of-squares error function (slide 10):

$$E_D\left(\widetilde{W}\right) = \frac{1}{2}Tr\left\{\left(\widetilde{X}\widetilde{W} - T\right)^T\left(\widetilde{X}\widetilde{W} - T\right)\right\}$$

Where

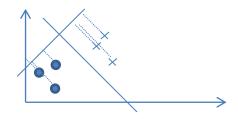
$$\widetilde{W} = \left(\widetilde{X^T}\widetilde{X}\right)^{-1}\widetilde{X^T}T = \widetilde{X^\dagger}T, \qquad y(x) = \widetilde{W}^T\widetilde{x} = T^T\left(\widetilde{X^\dagger}\right)^T\widetilde{x}$$

This is very sensitive to outliers: fitting a line using this method might be messed up by outliers.

Fisher's Linear Discriminant

 $y = w^T x$ is a dot product of w^T and x, i.e. it is a projection on some line.

x are points in the space, are projected on w which is a line perpendicular to y, and we are looking at the distribution of those projections, and we want those projections to be as separable as possible.



Binary classification with N_1 points of \mathcal{C}_1 and N_2 points of \mathcal{C}_2 :

$$m_1 = \frac{1}{N_1} \sum_{n \in C_2} x_n$$
, $m_2 = \frac{1}{N_2} \sum_{n \in C_2} x_n$

Between class distance: $m_2 - m_1 = w^T(m_2 - m_1)$

We want to maximize the between-class covariance – distance between the two means, and minimize the within-class covariance. That is the Fisher criterion:

$$J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} = \frac{w^T S_B w}{w^T S_W w}$$

$$S_B = (m_2 - m_1)(m_2 - m_1)^T$$
 – the covariance of the means

$$S_W = \sum_{n \in C_1} (x_n - m_1)(x_n - m_1)^T + \sum_{n \in C_2} (x_n - m_2)(x_n - m_2)^T$$
 - the in-class covariance

We want to maximize this:

$$\frac{\partial J(w)}{\partial w} = \frac{(w^T S_B w)'(w^T S_W w) - (w^T S_W w)'(w^T S_B w)}{(w^T S_W w)^2} = \frac{(w^T S_W w) S_B w - (w^T S_B w) S_W w}{(w^T S_W w)^2} = 0 \Leftrightarrow$$

$$(w^T S_W w) S_B w = (w^T S_B w) S_W w \Rightarrow$$

$$scalar$$

$$w \propto S_W^{-1}(m_2 - m_1)$$

Perceptron Algorithm

Perceptron function:

$$y(x) = f(w^T \phi(x))$$

Where

$$f(a) = \begin{cases} +1, a \ge 0 \ (C_1) \\ -1, a < 0 \ (C_2) \end{cases}$$

For each input point x we have a target value t – a binary target, and we want to have the function satisfy them:

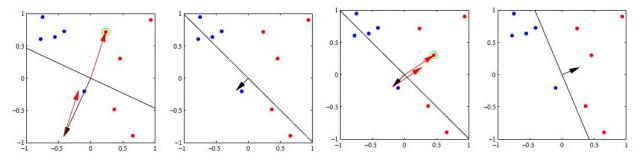
 $w^T \phi(x_n) t_n > 0$. Therefore:

<u>Perceptron criterion</u>: minimize $E_P = -\sum_{n \in M} w^T \phi(x_n) t_n$

We can solve it with stochastic descent $(\phi_n \coloneqq \phi(x_n))$:

$$w^{(\tau+1)} = w^{(\tau)} - \eta \nabla E_P = w^{(\tau)} + \eta \phi_n t_n$$

Example for the descent (iterative process):



It can be proven that if such a line exists, this iterative process converges.

At each iteration a misclassified point is taken, and w is added the red vector to that misclassified point, resulting with a new w (and a new line – w is perpendicular to it).

Logistic Sigmoid Function

Probabilistic generative models for binary class problems:

$$p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_2)p(C_2)} = \frac{1}{1 + \exp(-a)} = \sigma(a)$$

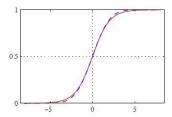
Where: $a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)}$

Development of $p(C_1|x)$ above:

$$\frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_2)p(C_2)} = \frac{\frac{1}{p(x|C_1)p(C_1) + p(x|C_2)p(C_2)}}{p(x|C_1)p(C_1)} = \frac{1}{1 + \left(\frac{p(x|C_2)p(C_2)}{p(x|C_1)p(C_1)}\right)^{-1}} = \frac{1}{1 + \exp\left(-\ln\frac{p(x|C_2)p(C_2)}{p(x|C_1)p(C_1)}\right)}$$

Logistic sigmoid function: $\sigma(a) = \frac{1}{1 + \exp(-a)}$

and it looks like this:



Probabilistic generative models (slide 24):

In binary class problems:

$$p(x|C_k) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k)\right\}$$
$$p(C_1|x) = \sigma(w^T x + w_0)$$

Where:

$$w = \Sigma^{-1}(\mu_1 - \mu_2)$$

$$w_0 = -\frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 + \frac{1}{2}\mu_2^T \Sigma^{-1}\mu_2 + \ln \frac{p(C_1)}{p(C_2)}$$

(This can be derived from σ)

Softmax Function

Sigmoid functions in multiclass problems:

$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{\sum_j p(x|C_k)p(C_k)} = \frac{\exp(a_k)}{\sum_j \exp(a_j)}, \quad a_k = \ln p(x|C_k)p(C_k)$$

Maximum Likelihood parameter estimation: (slide 31)

With K = 2:

 $\{x_n, t_n\}_{n=1}^N, C_k \equiv (t_k = 1), p(C_1) = \pi$ (the prior that is unknown), $p(C_2) = 1 - \pi$ and Gaussian class conditional densities (likelihoods).

Likelihood:

$$p(t|\pi, \mu_1, \mu_2, \Sigma) = \prod_{n=1}^{N} [\pi \mathcal{N}(x_n|\mu_1, \Sigma)]^{t_n} [(1-\pi)\mathcal{N}(x_n|\mu_2, \Sigma)]^{1-t_n}$$

Where $t = (t_1, ..., t_N)^T$

Estimation (class exercise):

$$\ln p(t|\pi, \mu_1, \mu_2, \Sigma) = \sum_{n=1}^{N} \ln([\pi \mathcal{N}(x_n|\mu_1, \Sigma)]^{t_n} [(1-\pi)\mathcal{N}(x_n|\mu_2, \Sigma)]^{1-t_n}) =$$

$$\sum_{n=1}^{N} [\ln[\pi \mathcal{N}(x_n | \mu_1, \Sigma)]^{t_n} + \ln[(1-\pi) \mathcal{N}(x_n | \mu_2, \Sigma)]^{1-t_n}] =$$

$$\sum_{n=1}^{N} \left[t_n(\ln \pi + \ln \mathcal{N}(x_n | \mu_1, \Sigma)) + (1 - t_n)(\ln(1 - \pi) + \ln \mathcal{N}(x_n | \mu_2, \Sigma)) \right] =$$

$$\frac{\partial \ln p(t|\pi, \mu_1, \mu_2, \Sigma)}{\partial \pi} = \sum_{n=1}^{N} \left[\frac{t_n}{\pi} + (1 - t_n) \cdot \frac{1}{1 - \pi} \cdot -1 \right] = \sum_{n=1}^{N} \frac{t_n}{\pi} + \frac{t_n - 1}{1 - \pi} = \cdots$$

Class solution:

The Log of the likelihood with π in it:

$$A := \sum_{n=1}^{N} [t_n \ln \pi + (1 - t_n) \ln (1 - \pi)]$$

$$\frac{\partial A}{\partial \pi} = \sum \left(\frac{t_n}{\pi} - \frac{1 - t_n}{1 - \pi}\right) = 0 \Leftrightarrow \sum (1 - \pi)t_n - \pi(1 - t_n) = \sum (t_n - \pi t_n - \pi + \pi t_n) = 0 \Leftrightarrow \boxed{\pi = \frac{1}{N} \sum_{n=1}^{N} t_n}$$

And since $t_n=1$ for \mathcal{C}_1 then $\pi=\frac{1}{N}N_1$ (and of course $1-\pi=\frac{1}{N}N_2$)

For μ_1 : the same, take log likelihood only for terms with μ_1 :

$$B := \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n (x_n - \mu_1)^T \sum_{n=1}^{N} (x_n - \mu_1)^T \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n (x_n - \mu_1)^T \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1, \Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \mathcal{N}(x_n | \mu_1,$$

$$\frac{\partial B}{\partial \mu_1} = 0 \Leftrightarrow \cdots \Leftrightarrow \left[\mu_1 = \frac{1}{N_1} \sum_{n=1}^{N} t_n x_n \right]$$

The trick to solve the above ... is compare linear and quadratic terms.

For
$$\mu_2$$
: $\mu_2 = \frac{1}{N_2} \sum_{(n=1)}^{N} (1 - t_n) x_n$

Estimating Σ : slide 35.

Probabilistic Discriminative Models

Logistic regression (for classification):

$$p(C_1|\phi) = y(\phi) = \sigma(w^T\phi)$$

For data set $\{\phi_n, t_n\}$ where $t_n \in \{0,1\}$, $\phi_n = \phi(x_n)$

Likelihood to estimate the parameters of the logistic regression model:

$$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1-t_n}, \quad t = (t_1, ..., t_N)^T, y_n = p(C_1|\phi_n)$$

Cross-entropy error function:

$$E[w] = -\ln p(t|w) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}, \quad y_n = \sigma(a_n), \quad a_n = w^T \phi_n$$

$$\nabla E(w) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

Newton-Raphson method: (slide 44+).