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Linear Models for Classification

Regression: last week we talked about linear regression that we try to fit.

Classification Goal:

Take a D-dimensional vector x and assign it one of K discrete classes Cy (k = 1, ..., K).
The input space is divided into decision regions bounded by decision boundaries.
Linear model for classification: decision surfaces define (D — 1)-dimensional hyperplanes.
1-of-K coding: t = (0,1,0,0,0)7 — meaning the class chosen is 2.
Activation function:

y(@) = f(W'x +w,)

And this function will give us the class of x.

Discriminant function
Directly model the activation function. E.g. for binary classification, the function will be the hyperplane separating 0 and 1.
Say we have the input space with points indicating inputs.
Aline y(x) is the decision line, and in the discriminant case:
y(x) =wix +w,
Assume there are x4, x;, that lay on the line, then they satisfy a set of linear equations:
y(x) =wlx, +wy =0
y(xp) =whx, +wy =0
= y(xg) = y(xp) = w'(x, — xp)
Therefore w — the vector of weights — is going to be perpendicular to the decision line.
Now assume a single point x lays on the line, then:
yx) =wix+w, =0=>wlx=—-w,
Then:
wix  w,
wl —wl

Say we have some point x not on the line, then it can be written as:

w
X=x, +r—
L wl

Where x| is the projection of the point onto the line in a perpendicular direction (the shortest projection).

And now:
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With a single line it’s a binary classification.
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Multiple classes:

not C,

(a) One-versus-the- (b) one-versus-one
rest

a. Find the line that best separates one class vs. the others. The obvious problem with that is that we will have regions
that we don’t really know how to assign a class in them (the green zone in the figure).
b. All-pairs lines, a total of (12() lines. Then we again get a green “unknown” region.
We will use K different discriminant functions:
Vi (X) = wix + wyg

And assign the class for the k that satisfies k = argmax y; (x).

Least Squares classification
Each class Cy, is described by its own linear model: y,(x) = wlx + wy,
y(x) = WTx

Given a training data set {x,, t,}_,, sum-of-squares error function (slide 10):

By (W) =5 7r{(xw — 1) (xw 7))

-1 ~

~ ~T. ~\T _
X'T =X'T, y(x) =w x=TT(X*) X

W = (%)

This is very sensitive to outliers: fitting a line using this method might be messed up by outliers.

Fisher’s Linear Discriminant
y = wTx is a dot product of w” and x, i.e. it is a projection on some line.
x are points in the space, are projected on w which is a line perpendicular to y, and we are looking at the distribution of

those projections, and we want those projections to be as separable as possible.
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Binary classification with N; points of C; and N, points of C,:

1 1
m; = — Xp, My = — Xn
N1 N2

necy NneCy
Between class distance: m, — m; = w’(m, — m,)
We want to maximize the between-class covariance — distance between the two means, and minimize the within-class
covariance. That is the Fisher criterion:

(m;, — m1)2 WTSBW

Jw) =

s2+s2  wiSyw

Sg = (my — my)(m, — my)T — the covariance of the means

Sw = Znec, n — my)(xy — m)" + Ypec, (X, — my) (x, — my)" - the in-class covariance
We want to maximize this:

aJw) (W 'Spw) W' Syw) — W' Syw)' W Sgw) — (W' Sy,w)Spw — (W' Spw)Sy,w
ow wTS,w)? B wTSy,w)?

=0

WTSyw)Sgw = WTSzw)S,w =
scalar scalar

|W x Syt (my —m1)|

Perceptron Algorithm
Perceptron function:

y(x) = f(wTp(x))
Where

_(+1,a=0(Cy)
fla)= {—1,a <0(C,)

For each input point x we have a target value t — a binary target, and we want to have the function satisfy them:
wT¢(x,)t, > 0. Therefore:

Perceptron criterion: minimize Ep = — Y ey WY @ ()0

We can solve it with stochastic descent (¢,, == ¢(x;,)):

wTD = w® —nVE, = w® +n¢,t,

Example for the descent (iterative process):

1 1 . 0

=] 05 0 05 1 -1 -05 0 05 -1

It can be proven that if such a line exists, this iterative process converges.
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At each iteration a misclassified point is taken, and w is added the red vector to that misclassified point, resulting with a

new w (and a new line —w is perpendicular to it).

Logistic Sigmoid Function
Probabilistic generative models for binary class problems:

p(x|C)p(Cy) 1

PR = i) + pICp(C) ~ T+ exp(-a) @
e =
Development of p(C;|x) above:
p(x|C)p(Cy) _ px[C)p(Cy) ‘|1‘P(x|C2)P(Cz) _ 1 _ 1
p(xlCOP(C) + p(x|Cp(C2) p(x|C)p(Cy) . (zglgggg)‘l 1 texp (_ lnggl%%ﬁ)

1

Logistic sigmoid function:|o(a) = Trowia

and it looks like this:

Probabilistic generative models (slide 24):

In binary class problems:
1 1 1 S
PG = —p—exp{—3 (& — w30 - )
(2m)z |Z|2
p(Cilx) = oc(w'x + wy)
Where:
w = 2'1(;11 - Uz)

1 _ 1 _ p(Cy)
Wo = =S HE Ty oz g + lnp(CZ)

(This can be derived from o)

Softmax Function
Sigmoid functions in multiclass problems:

p(x|C)p(Cy) _ exp(ay)
2ip&lCIp(C)  ¥jexp(a;)’

p(Cxlx) = a, = Inp(x|C)p(Cy)
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Maximum Likelihood parameter estimation: (slide 31)

With K = 2:

{xp, to N1, C = (&, = 1),p(C,) = 7 (the prior that is unknown), p(C,) = 1 — 7 and Gaussian class conditional densities
(likelihoods).

Likelihood:

N
p(tlm, uy, pp, ) = n[ﬂN(onp D[ - ﬂ)N(xnI#z,Z)]l‘t"

n=1

Where t = (tq, ..., ty)7T

Estimation (class exercise):

Inp(tlm, uy, pp, X) = Z In([7V Cep g, DRI = MN (e |y, D) =

n=1

D I eyl 217+ I0[(1 = DN Gz, D] =

n=1

N
Z[tn(lnﬂ +In NV (%, |y, ) + (1 = t)(n(1 — ) + In NV (xplpz, X)) =

n=1
alnp(t| T ot 1 e ot -1
np T, Uy, U, [n ] n n -
=E -t -—-—1=E— =
o n+( n) 1-m TL’+1—T[
n=1 n=1

Class solution:

The Log of the likelihood with 7 in it:

N

A= Z[tn Inm + (1 —t,) In(1 — )]

n=1

04 (tn 1—-t,

N
1
$_ n >=0:>2(1_T[)tn_n-(1_tn)=Z(tn—T[tn—T[+7Ttn)=0C> ﬂ:NZtn

n 1—-m

And since t,, = 1 for C; then = 1Nl(and ofcourse 1 —m = lNz)
n N N

For u,: the same, take log likelihood only for terms with p;:
c 1
B = Z ta IV (x| g, ) = _Eztn(xn - ﬂl)TZ_l(xn - )

n=1

98 _ 1 it
- = oo u=— x
ouy ! N1n=1 e

The trick to solve the above ... is compare linear and quadratic terms.

1
For uy: |y = N_Zzl(vnzﬂ(l — tp)xp

Estimating X: slide 35.
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Probabilistic Discriminative Models

Logistic regression (for classification):

p(Cip) = y(@) = (W' ¢)

For data set {¢,, t,} where t,, € {0,1}, ¢, = P(x;,)

Likelihood to estimate the parameters of the logistic regression model:

N
p(elw) = [ [y =y, €= (ot 30 = DGl
n=1

Cross-entropy error function:

E[w] = —Inp(tlw) = — Z{tn Iny, + (1 —t,) In(1 - y,)}, Yo = 0(ay),
n=1

N
VE(W) = Z(yn - tn)d)n

Newton-Raphson method: (slide 44+).

an = WT¢n

Ariel Stolerman



