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Linear Models for Classification 

Regression: last week we talked about linear regression that we try to fit. 

Classification Goal: 

Take a  -dimensional vector   and assign it one of   discrete classes    (       ). 

The input space is divided into decision regions bounded by decision boundaries. 

Linear model for classification: decision surfaces define (   )-dimensional hyperplanes. 

1-of-  coding:   (         )  – meaning the class chosen is  . 

Activation function: 

 ( )   (      ) 

And this function will give us the class of  . 

Discriminant function 

Directly model the activation function. E.g. for binary classification, the function will be the hyperplane separating 0 and 1. 

Say we have the input space with points indicating inputs. 

A line  ( ) is the decision line, and in the discriminant case: 

 ( )         

Assume there are       that lay on the line, then they satisfy a set of linear equations: 

 (  )            

 (  )            

   (  )   (  )    (     ) 

Therefore   – the vector of weights – is going to be perpendicular to the decision line. 

Now assume a single point   lays on the line, then: 

 ( )                   

Then: 

   

| |
  

  

| |
 

Say we have some point   not on the line, then it can be written as: 

       
 

| |
 

Where    is the projection of the point onto the line in a perpendicular direction (the shortest projection). 

And now: 
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With a single line it’s a binary classification. 
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Multiple classes: 

 

a. Find the line that best separates one class vs. the others. The obvious problem with that is that we will have regions 

that we don’t really know how to assign a class in them (the green zone in the figure). 

b. All-pairs lines, a total of ( 
 
) lines. Then we again get a green “unknown” region. 

We will use   different discriminant functions: 

   ( )    
       

And assign the class for the   that satisfies            ( ). 

 

Least Squares classification 

Each class    is described by its own linear model:   ( )    
       

 ( )   
 

  
 

 

Given a training data set *     +   
 , sum-of-squares error function (slide 10): 
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This is very sensitive to outliers: fitting a line using this method might be messed up by outliers. 

 

Fisher’s Linear Discriminant 

      is a dot product of    and  , i.e. it is a projection on some line. 

  are points in the space, are projected on   which is a line perpendicular to  , and we are looking at the distribution of 

those projections, and we want those projections to be as separable as possible. 
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Binary classification with    points of    and    points of   : 

   
 

  

∑   
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Between class distance:         (     ) 

We want to maximize the between-class covariance – distance between the two means, and minimize the within-class 

covariance. That is the Fisher criterion: 

 ( )  
(     )
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  – the covariance of the means 
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 - the in-class covariance 

We want to maximize this: 
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Perceptron Algorithm 

Perceptron function: 

  ( )   (   ( )) 

Where 

  ( )  {
       (  )

       (  )
 

For each input point   we have a target value   – a binary target, and we want to have the function satisfy them: 

   (  )    . Therefore: 

Perceptron criterion: minimize     ∑    (  )      

We can solve it with stochastic descent (    (  )): 

 (   )   ( )        ( )        

Example for the descent (iterative process): 

 

It can be proven that if such a line exists, this iterative process converges. 
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At each iteration a misclassified point is taken, and   is added the red vector to that misclassified point, resulting with a 

new   (and a new line –   is perpendicular to it). 

 

Logistic Sigmoid Function 

Probabilistic generative models for binary class problems: 

 (  | )  
 ( |  ) (  )
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Where:     
 ( |  ) (  )
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Development of  (  | ) above: 
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Logistic sigmoid function:  ( )  
 

     (  )
 

and it looks like this: 

 

Probabilistic generative models (slide 24): 

In binary class problems: 
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Where: 
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(This can be derived from  ) 

 

Softmax Function 

Sigmoid functions in multiclass problems: 
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Maximum Likelihood parameter estimation: (slide 31) 

With    : 

*     +   
     (    )  (  )    (the prior that is unknown),  (  )      and Gaussian class conditional densities 

(likelihoods). 

Likelihood: 

 ( |         )  ∏,  (  |    )-  ,(   ) (  |    )-    

 

   

 

Where   (       )  

Estimation (class exercise): 
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Class solution: 

The Log of the likelihood with   in it: 
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And since      for    then   
 

 
  (and of course     
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For   : the same, take log likelihood only for terms with   : 
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The trick to solve the above … is compare linear and quadratic terms. 

For   :    
 

  
∑ (    )  

 
(   )  

Estimating  : slide 35.  
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Probabilistic Discriminative Models 

Logistic regression (for classification): 

 (  | )   ( )   (   ) 

For data set *     + where    *   +,     (  ) 

Likelihood to estimate the parameters of the logistic regression model: 

 ( | )  ∏  
  *    +    

 

   

      (       )      (  |  ) 

Cross-entropy error function: 
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Newton-Raphson method: (slide 44+). 

 


