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Machine Learning examples  

Autonomous helicopter: an autonomous helicopter that uses learning to incorporate information about the environment 

(like wind) to plan its route. 

Autonomous vehicle: hands-free car that needs to follow some dessert terrain route. 

Many other fields: computer vision, NLP, games etc. 

Why learn? 

Some tasks are easy for humans, but hard to express in simple mathematical rules, such as face recognition. 

Supervised learning: 

 The systems receives a training data, for both “true” and “false” classes. For instance: faces of the desirable face to be 

recognized, and faces of others. Labeled data. 

 Recognition of unseen instances. 

Unsupervised learning: 

 Only inputs are given, with no labels. 

 Find a structure in the given set. 

 For instance: clustering, anomaly detection. 

Reinforcement learning: 

 Train a system by giving it “rewards” when it does something good – kind of like human learning… 

 For testing instances, given a data – if it is classified correctly, you are rewarded. The goal of the system will be to 

maximize the rewards. Will not be covered. 

Examples of supervised learning: 

Regression (curve fitting): given     points as data, fitting a curve to those points is regression. If we have an idea of how 

the data looks like, we can fit a function to the data and predicts other instances. 

Classification: trying to infer the label of given data instances; for instance, face recognition. The classifier will be trained on 

“true” and “false” instances (i.e. labeled). It is a partition of the domain such that future unseen data is mapped to either 

part of the partition. 

Examples of unsupervised learning: 

Clustering: Will be used for high-dimensional universes. For instance, finding centroids for clustering. 

Embedding: finding low-dimensional manifold near which the data live: learning what is the manifold, without having the 

mathematical representation of the manifold in advance. 

Compression/Quantization: find a function that compresses the data such that each input can be reconstructed from it. 

Learning   Memorization: 

Memorization can be useful when we have a large amount of data storage capacity, and want to make decisions fast. But a 

distance measurement will be hard (for instance, measuring differences of a given face image to the memorized data); also, 

a lot of data is required; lastly, accuracy is not guaranteed. 
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Paradigms: 

Frequentist vs. Bayesian: 

Later today. 

Generative vs. Discriminative: 

 Generative:? 

 Discriminative: trying to find a classifier that separates the data into different classes. 

 

Probability Theory 

The Monty Hall problem: 

We are given 3 doors in a game-show, 1 door with a car and 2 with goats. 

We pick 1 door, and the host of th game-show opens another door, showing it has a goat. 

What should we do? Change our decision? Or keep the original door we picked? We should switch! 

Say we choose door 1, and a goat is revealed behind door 2. 

Case 1: loose after the switch, i.e. the car was behind door #1. Probability: 
 

 
 – we pick 1 out of 3 doors. 

Case 2: win after switch, i.e. a goat was behind door #1 (since the host took care of the other goat). Probability: 
 

 
 – as we 

have 2 goats behind 3 doors. 

Therefore we should switch. 

Variation: there are 100 doors, 99 goats, 98 of them are revealed – we should still switch. 

Variation 2: 97/100 goats are revealed. 

Variation 3: 1/100 goat is revealed. 

General: 

We have   doors, 1 car,     goats and the host opens   doors. Should we switch? 

My calculations: 
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It is sufficient that the host opens 1 door to increase the odds of winning. 

Class solution: 

  [                  ]    [                ]    [              ]    [              ]  
 

 
 

   

 
 
     

     
 

The       is       left goats, minus the additional 1 that we hit first. 

  [               ]    [              ]    [            ]  
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Sanity check: the probabilities must sum up to 1: 

 

 
 

   

 
 
     

     
 

   

 
 

 

     
 

 

 
 

              

     
    that’s good. 

Now we want   [   ]    [     ], and that happens when: 

   

 
 

 

     
 

 

 
 

   

 
 
     

     
                         

                                               

              
 

 
         

 

 
   

If      ,   has to be       
 

   
             . 

That is the case where the host opens all doors except the one I chose and some other door. 

Another way to look at the problem: 

Case 1: loose because I switched. 

Case 2: win because I switched. 

  [                      ]    [                        ]  
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  [   ]    [     ]  
   

 
 

 

     
 

 

 
     

And this says that you should always switch, but these don’t sum up to 1 (we disregarded the cases in which we lost both 

choices). 

We can look at the ratio 
  [   ]

  [    ]
 

   

     
   but when    , this ratio   , so it won’t matter. 

Another approach: 

We can intuitively think that as goats are revealed, the probability the car is behind the door I initially chose immediately 

increases from 
 

 
  to 

 

   
. 
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A simple example: 

Given 2 boxes (red, blue) with oranges and apples, denoted: 

  {   }   {   } 

  and   are random variables. 

Assume we pick red 40% of the time, then: 

       
 

  
        

 

  
 and they sum up to 1. 

 

Consider two random variables   {            }   {           } and we conduct   trials. 

Sum rule: 

     ∑      

 

 

    ∑      

 

 

Marginalize the joint probability: marginal probability. 

Product rule: 

                               – seeing   and then seeing   given we saw  , or vice versa. 

Bayes theorem: 

                                

       
           

    
 

           

∑             

 

When     are independent: 

            and vice versa                   

Back to    : 

Say        
 

  
        

 

  
. 

We choose a fruit and it turns out to be an orange. What is the probability of the box being blue? 

Red box: 2 apples, 6 oranges. 

Blue box: 1 orange, 3 apples. 

Total oranges: 7 

Total apples: 5 

           
                 

      
 

              

      
 

 

 
 
 

  
 
  

 
 

Probability of choosing an apple: 

       ∑        

 

 ∑            
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Probability densities: 

Continuous random variables: 

 (       )  ∫       
 

 

 

       ∫       
 

  

   

Change of variable       : 

           |
  

  
|    (    )        

Cumulative distribution function: 

     ∫       
 

  

 

  

  
      

It means that given a small range      , then  (       )  ∫       
 

 
 

     is the function of area under the probability, so the probability   is the derivative of  . 

For a multiple continuous variable:                   {          }: 

       ∫          

All previous rules apply: sum, product and Bayes. 

     ∫          

Etc. 

Expectation: 

The average value (mean) of a function      under a probability distribution     : 

Discrete case:  [ ]  ∑           

Continuous case:  [ ]  ∫            

For   discrete data points:  [ ]  
 

 
∑      

 
    

Conditional expectation: 

Discrete case:   [   ]  ∑             

And the cont. is similar. 

Variance: 

The squared difference from the mean: 

   [ ]   [       [    ]  ]   [     ]   [    ]  

   [ ]   [  ]   [ ]  
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Expectation rules: 

 Monotonicity:      [ ]   [ ] 

 Linearity: 

o  [   ]   [ ]    

o  [   ]   [ ]   [ ] 

o  [  ]    [ ] 

Now: 

   [    ]   [       [    ]  ]   [            [    ]    [    ]]   

 [     ]    [    ] [    ]   [    ]   [     ]   [    ]  

Covariance: 

The extent to which two variables vary together: 

   [   ]   [    [ ]     [ ] ]   [  ]   [ ] [ ] – we should derive this at home. 

Following is the derivation: 

 [    [ ]     [ ] ]   [     [ ]    [ ]   [ ] [ ]  ] 

 [  ]   [ ] [ [ ]]   [ ] [ [ ]]   [ [ ] [ ]]   [  ]   [ ] [ ]   [ ] [ ]   [ ] [ ]   

 [  ]   [ ] [ ] 


