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Machine Learning examples

Autonomous helicopter: an autonomous helicopter that uses learning to incorporate information about the environment

(like wind) to plan its route.

Autonomous vehicle: hands-free car that needs to follow some dessert terrain route.

Many other fields: computer vision, NLP, games etc.

Why learn?

Some tasks are easy for humans, but hard to express in simple mathematical rules, such as face recognition.

Supervised learning:

e The systems receives a training data, for both “true” and “false” classes. For instance: faces of the desirable face to be
recognized, and faces of others. Labeled data.

e Recognition of unseen instances.

Unsupervised learning:

e  Onlyinputs are given, with no labels.

e  Find a structure in the given set.

e  Forinstance: clustering, anomaly detection.

Reinforcement learning:

e Train a system by giving it “rewards” when it does something good — kind of like human learning...

e  For testing instances, given a data — if it is classified correctly, you are rewarded. The goal of the system will be to
maximize the rewards. Will not be covered.

Examples of supervised learning:

Regression (curve fitting): given x, y points as data, fitting a curve to those points is regression. If we have an idea of how
the data looks like, we can fit a function to the data and predicts other instances.

Classification: trying to infer the label of given data instances; for instance, face recognition. The classifier will be trained on
“true” and “false” instances (i.e. labeled). It is a partition of the domain such that future unseen data is mapped to either
part of the partition.

Examples of unsupervised learning:

Clustering: Will be used for high-dimensional universes. For instance, finding centroids for clustering.

Embedding: finding low-dimensional manifold near which the data live: learning what is the manifold, without having the
mathematical representation of the manifold in advance.

Compression/Quantization: find a function that compresses the data such that each input can be reconstructed from it.

Learning #+ Memorization:

Memorization can be useful when we have a large amount of data storage capacity, and want to make decisions fast. But a
distance measurement will be hard (for instance, measuring differences of a given face image to the memorized data); also,

a lot of data is required; lastly, accuracy is not guaranteed.
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Paradigms:

Frequentist vs. Bayesian:

Later today.

Generative vs. Discriminative:

e Generative:?

e Discriminative: trying to find a classifier that separates the data into different classes.

Probability Theory

The Monty Hall problem:

We are given 3 doors in a game-show, 1 door with a car and 2 with goats.
We pick 1 door, and the host of th game-show opens another door, showing it has a goat.
What should we do? Change our decision? Or keep the original door we picked? We should switch!

Say we choose door 1, and a goat is revealed behind door 2.

Case 1: loose after the switch, i.e. the car was behind door #1. Probability: % — we pick 1 out of 3 doors.

Case 2: win after switch, i.e. a goat was behind door #1 (since the host took care of the other goat). Probability: 2— as we

have 2 goats behind 3 doors.

Therefore we should switch.

Variation: there are 100 doors, 99 goats, 98 of them are revealed — we should still switch.
Variation 2: 97/100 goats are revealed.

Variation 3: 1/100 goat is revealed.

General:

We have n doors, 1 car, n — 1 goats and the host opens p doors. Should we switch?

My calculations:

1
Pr[loose after switch] = -

Pr[win after switch] = Pr[choose goat] - Pr[switch to car | p goats are revealed] =

n—1 1 S
n n—-(p+1) n

on—-1>n—-p-1eop>0=>

It is sufficient that the host opens 1 door to increase the odds of winning.
Class solution:

n—-1n—p-2

1
Pr[loose after switch] = Pr[choose car first] + Prl[hit goat first] - Pr[hit goat again] = - + n n—p—1

Then —p — 2isn —p — 1 left goats, minus the additional 1 that we hit first.
n—1 1
n n-p-1

Pr[win afer switch] = Prl[hit goat first] - Pr[hit car next] =
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Sanity check: the probabilities must sum up to 1:

1, n-1 n—p—i n-1 1 _1 (n-1)(n-p-2+1) — 1 = that's good.

n n  n-p- n  n-p-1 T n n-p-1
Now we want Pr[win] > Pr[loose], and that happens when:

n—1 1 1 n—-1n-p-2

_— — o n-1>n-p-1+(n-1)(n—-p-2) &
n n—-p—-1 n n n-—p-1 " n-e ( n—p )
p>m—-1n-p-2)ep>n’—nmp-2n—-n+p+2en’—-np+3)+2<0e
2 2
n2+2<n(p+3)<:)n+;<p+3(:)p>n+z—3
Ifn=100,phastobep>100+%—3=97.02=>p298.

That is the case where the host opens all doors except the one | chose and some other door.

Another way to look at the problem:

Case 1: loose because | switched.

Case 2: win because | switched.

1
Pr[loose because I switch] = Prloriginally chose the car] = -

n—1 1
Pr[won because I switch] = Pr[loose first] - Pr[then hit] = — m =
_ n-1 1 1
Pr[win] > Pr[loose] & ———>—-op>0
n n—-p—1 n

And this says that you should always switch, but these don’t sum up to 1 (we disregarded the cases in which we lost both

choices).

Prwin] _ n-1

We can look at the ratio > 1 but when n — oo, this ratio — 1, so it won’t matter.

Pr[lose] n-p-1

Another approach:

We can intuitively think that as goats are revealed, the probability the car is behind the door | initially chose immediately

. 1 1
increases from - to —.
n n-p
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A simple example:

Given 2 boxes (red, blue) with oranges and apples, denoted:
B ={r,b},F = {a, 0}

B and F are random variables.

Assume we pick red 40% of the time, then:

p(B=r)= %,p(B =bh) = I—Zand they sum up to 1.

Consider two random variables X € {x; | i = 1,...,M},Y € {y;| i = 1, ..., L} and we conduct N trials.

Sum rule:

p(0) = D P,
Y

P ) p(X.1)

Marginalize the joint probability: marginal probability.
Product rule:
pX,Y) =p|X) -p(X) = p(X|Y) - p(Y) —seeing X and then seeing Y given we saw X, or vice versa.
Bayes theorem:
pX,Y) =p(1X) - p(X) = p(X|Y) - p(Y) =
p&IY)-p() _ p&IY)-p()
p(X) Lyp(X[Y) -p(¥)
When X, Y are independent:
p(Y|X) = p(Y) and vice versa = p(X,Y) = p(X) - p(Y)
Backto B, F:

p(Y1X) =

Sayp(B=r1) = :—O,p(B =b)= %.
We choose a fruit and it turns out to be an orange. What is the probability of the box being blue?
Red box: 2 apples, 6 oranges.
Blue box: 1 orange, 3 apples.

Total oranges: 7

Total apples: 5

P8 =blF =0)= p(F =0) B p(F = o) 410 9

Probability of choosing an apple:

p(F =)= p(F=aB)= ) p(F =alB)p(B) = p(F = alB = Ip(B =) + -
B B
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Probability densities:

Continuous random variables:

b
p(x € (a,b)) = f p(x)dx

p(x) = O,pr(x)dx =1

Change of variable x = g(y):

dx
P = .00 || = pe(alg 0]

Cumulative distribution function:

P(z) = f p(x)dx

dP

dx =px)

It means that given a small range (a, b), then p(x € (a, b)) = f: px(dx)

P(z2) is the function of area under the probability, so the probability p is the derivative of P.

For a multiple continuous variable: p(x) = p(xy, ..., xp),x = {x;]i =1, ...,D}:
p(x) =0, p(x)dx =1

All previous rules apply: sum, product and Bayes.

p(x) = [ p(x,y)dy

Etc.

Expectation:

The average value (mean) of a function f(x) under a probability distribution p(x):
Discrete case: E[f] = Y, f(x)p(x)

Continuous case: E[f] = [ f(X)p(x)dx

For N discrete data points: E[f] = %Z,’Llf(xn)

Conditional expectation:
Discrete case: Ex[f]y] = X f()p(x]y)
And the cont. is similar.
Variance:
The squared difference from the mean:
var[f] = E[(f (x) = E[f (OD?*] = E[f (x)*] = E[f ()]*
var[x] = E[x?] — E[x]?

Ariel Stolerman
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Expectation rules:
e  Monotonicity: X =Y = E[X] = E[Y]
e Linearity:
o E[X+c]l=E[X]+c
o E[X+Y]=E[X]+E[Y]
o ElaX] = aE[X]
Now:
var[f (0] = E[(f(X) = E[f ()D?] = E[f*(X) = 2f DEf O] + E*[f(0)]] =
E[f*(0] = 2E[f (IE[F O] + E[f(0)* = [ELF2(0] = E[f O]

Covariance:

The extent to which two variables vary together:

var[X,Y] = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y] — we should derive this at home.

Following is the derivation:

E[(X —E[XDD(Y —E[Y])] = E[XY — XE[Y] — YE[X] + E[X]E[Y] =]

Ariel Stolerman

E[XY] - E[X]E[E[Y]] — EIYIE[E[X]] + E[E[X]E[Y]] = E[XY] — E[X]E[Y] — E[Y]E[X] + E[X]E[Y] =

E[XY] - E[X]E[Y]



