1

## CS525 Winter 2012 \ Class Assignment #6 3/7/2012

Aylin Caliskan

Nicholas Milkovits

Ariel Stolerman

## 6.4)

Let  $A'_{TM} = \{\langle M, w \rangle | M \text{ is an Oracle TM and } M^{A_{TM}} \text{ accepts } w\}$ . Following is a proof that  $A'_{TM}$  is undecidable relative to  $A_{TM}$ :

Assume by contradiction that  $A'_{TM}$  is decidable relative to  $A_{TM}$ , then there exists a TM R with oracle access to  $A_{TM}$ , denoted  $R^{A_{TM}}$  that decides  $A'_{TM}$ . We will define the following TM S:

"For input w:

- If w is not a proper encoding of a TM with oracle access to a  $A_{TM}$ , reject.
- Otherwise, denote that machine  $T^{A_{TM}}$ .
- Simulate R on  $(T^{A_{TM}}, T^{A_{TM}})$ . If it accepts, reject. Otherwise, accept."

This is basically applying the diagonalization argument in the same manner as done for  $A_{TM}$ . Note that *S* is a TM with oracle access to  $A_{TM}$ , as it uses *R* which is a decider for  $A'_{TM}$  with oracle access to  $A_{TM}$ , therefore  $\langle S, S \rangle$  is a candidate for  $A'_{TM}$ . *S* is defined to return the opposite of any TM with oracle access to  $A_{TM}$  when simulated on itself. Since *S* is part of a candidate for  $A'_{TM}$  itself, when given the code of itself  $\langle S \rangle$ , it is defined to do the opposite of what it does – a contradiction. Therefore *R* cannot exist, and so  $A'_{TM}$  is undecidable relative to  $A_{TM}$ .

## 6.13)

Following is a proof that for each m, the theory  $Th(F_m)$ , where  $F_m = (Z_m, +, \times)$  is a model over the group  $Z_m = \{0, 1, 2, ..., m - 1\}$  and the relations  $+, \times$  computed modulo m, is decidable:

Denote a simple addition or multiplication modulo m, consisting of vectors of size 3 where the first and second rows are the arguments and the third row is the result. Without loss of generality, we will look at +. For any given m, there are  $m^2$  true additions, i.e. combinations that denote a correct addition modulo m. We can check for a given string over  $\Sigma_3 = (01 - 11)$ 

- $\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \dots, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$  that is represents a true addition modulo m as follows:
- Make sure all rows represent numbers in {0,1, ..., m − 1}.
- If yes, check whether the third row fits the result expected for the first two rows (out of the  $m^2$  options).
- If yes, it is a true addition modulo *m*, otherwise it is not.

Similar method can be applied on multiplication modulo m.

Next, for any given formula of the form  $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)]$ , where  $Q_i$  are quantifiers,  $x_i$  are variables and  $\psi$  is a quantifier-free formula with the + and × modulo m relations (and the standard operators, e.g.  $\neg$ ), we check all possible assignments of all  $x_i$  for the corresponding quantifier  $Q_i$  as follows:

Denote  $I_l(x_1, ..., x_l) = \psi(x_1, ..., x_l)$ . For any i > 0:

• If 
$$Q_i = \exists : I_{i-1}(x_1, \dots, x_{i-1}) = \bigvee_{k=0}^{m-1} I_i(x_1, \dots, x_{i-1}, k)$$

• If  $Q_i = \forall : I_{i-1} = \bigwedge_{k=0}^{m-1} I_i(x_1, \dots, x_{i-1}, k)$ 

Eventually, we get  $I_0 \equiv \varphi$ , and it can be calculated whether it is a true statement in finite time for any given m. Therefore  $Th(F_m)$  is decidable for any m.

## 6.14)

Following is a proof that for any two languages A, B a language J exists such that  $A \leq_T J$  and  $B \leq_T J$ :

Let  $J = \{\overline{0}a \mid a \in A\} \cup \{\overline{1}b \mid b \in B\}$ , where  $\overline{0}, \overline{1}$  are symbols that do not appear in any  $w \in A \cup B$ . We can then define a TM M that is decidable relative to J as follows:

"For input w:

- Check with the oracle of *J* whether  $\overline{0}w \in J$ .
- If it accepts, accept. Otherwise, reject."

Clearly  $w \in A \Leftrightarrow \overline{0}w \in J$ . In a similar manner we can construct a TM that decides B by mapping w to  $\overline{1}w$  and querying the oracle of J. Therefore both  $A \leq_T J$  and  $B \leq_T J$ , as required.