Caliskan, Milkovits, Stolerman \ CS525 Class Assignment #6 3/7/2012

CS525 Winter 2012 \ Class Assighment #6 3/7/2012

Aylin Caliskan
Nicholas Milkovits

Ariel Stolerman

6.4)

Let A7y = {{M,w)| M is an Oracle TM and MA™ accepts w}. Following is a proof that A7, is undecidable relative to
Ary:

Assume by contradiction that A7, is decidable relative to A7y, then there exists a TM R with oracle access to Ay, denoted
RATM that decides A7,,. We will define the following TM S:

“For input w:

e Ifwisnota proper encoding of a TM with oracle access to a Ay, reject.

e Otherwise, denote that machine T4TM,

e Simulate R on (TAT™ TATM)_|f it accepts, reject. Otherwise, accept.”

This is basically applying the diagonalization argument in the same manner as done for Ay,,. Note that S is a TM with oracle
access to Ary, as it uses R which is a decider for A7), with oracle access to A7y, therefore (S, S) is a candidate for A7y,. S
is defined to return the opposite of any TM with oracle access to Ary when simulated on itself. Since S is part of a
candidate for A%, itself, when given the code of itself (S), it is defined to do the opposite of what it does — a contradiction.

Therefore R cannot exist, and so A7, is undecidable relative to Ary,.

6.13)

Following is a proof that for each m, the theory Th(F,), where E, = (Z,,, +,X) is a model over the group Z,, =
{0,1,2, ..., m — 1} and the relations +,x computed modulo m, is decidable:

Denote a simple addition or multiplication modulo m, consisting of vectors of size 3 where the first and second rows are the
arguments and the third row is the result. Without loss of generality, we will look at +. For any given m, there are m? true

additions, i.e. combinations that denote a correct addition modulo m. We can check for a given string over X; =
0 1
0{,...,|1|¢ thatis represents a true addition modulo m as follows:
0 1

e  Make sure all rows represent numbersin {0,1, ..., m — 1}.

e Ifyes, check whether the third row fits the result expected for the first two rows (out of the m? options).

o Ifyes, itis atrue addition modulo m, otherwise it is not.

Similar method can be applied on multiplication modulo m.

Next, for any given formula of the form ¢ = Q;x; ... Q;x;[W(xy, ..., x)], where Q; are quantifiers, x; are variables and i is a
quantifier-free formula with the + and X modulo m relations (and the standard operators, e.g. =), we check all possible

assignments of all x; for the corresponding quantifier Q; as follows:
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Denote I;(xq, ..., X;) = Y (x4, ..., x;). Forany i > 0:

o IfQ;=3:L_1(xq, 0, xi1) = VIES L;(Xq, s X1, k)

o IfQ;=V:ili_i =Nt L(xq, o, X210, k)

Eventually, we get I, = ¢, and it can be calculated whether it is a true statement in finite time for any given m. Therefore

Th(F,,) is decidable for any m.

6.14)

Following is a proof that for any two languages A, B a language ] exists such that A <; Jand B <. J:

Let ] = {0a | a € A}JU{1b | b € B}, where 0,1 are symbols that do not appear in any w € AUB. We can then define a TM
M that is decidable relative to J as follows:

“For input w:

e Check with the oracle of ] whether 0w € J.

e Ifit accepts, accept. Otherwise, reject.”

Clearly w € A & 0w €. In a similar manner we can construct a TM that decides B by mapping w to 1w and querying the

oracle of J. Therefore both A <; J and B < ], as required.



