
Caliskan, Milkovits, Stolerman \ CS525 Class Assignment #4  2/15/2012
 1 

  

CS525 Winter 2012 \ Class Assignment #4, 2/15/2012 

Aylin Caliskan 

Nicholas Milkovits 

Ariel Stolerman 

 

5.13) 

Let      *〈 〉                                 +. Following is a proof that      is undecidable. Assume that      is 

decidable, then there is a Turing machine   that decides it, so we can construct a TM   that will decide     as follows. 

We first define a Turing machine    for any 〈   〉, with an additional symbol in the alphabet   and additional states are 

introduced, specifically          among them. In addition, any previous transition to         shall be through          EXCEPT 

if the input symbol is the new   symbol.    is defined as follows: 

“On input  : 

 If    , go through all states except          and then go to         (accept). 

 Otherwise, if    , go to         (reject). 

 Otherwise simulate   on     (using the same states of  ).” 

Now we define the TM   as follows: 

“On input 〈   〉: 

 Construct    from 〈   〉 as described above. 

 Run   on   . If it accepts, reject. Otherwise, accept. 

First, note that    will enter all states except for          in any case, as for the input   it goes through all but 

                 and for any input other than     it goes through        . Now, for    to be in      it has to avoid going 

through          for the input  , and that will happen iff 〈   〉     . Therefore we can simulate   on the generated TM 

   and be sure that if it accepts, it has a useless state         , meaning   does not accept   (and the other way as well). 

 

5.14) 

Let 

      

*〈   〉                                                                                                                 +. 

Following is a proof that       is undecidable. Assume       is decidable, then there is a Turing machine   that decides it, 

so we can construct a TM   that decides     as follows. 

First we define a TM    for any 〈 〉 as follows: 

 Before doing anything, mark the first character. The first character in the tape will keep being marked every time it is 

changed by some state. 



Caliskan, Milkovits, Stolerman \ CS525 Class Assignment #4  2/15/2012
 2 

  

 Simulate   on the given input step by step, only whenever you land on a the marked character (which indicates the 

first position), and   dictates a left step, go right and left again instead, doing the state transition as originally dictated, 

and the character swap keeping the mark: 

In  :  (   )  (     )   in   : 

o Not at first cell (unmarked character):   (   )  (     ) 

o At first cell (marked character):   (   ̂)  (    ̂  )        (    )  (     ), where    indicates the mark 

and    is a new state in   . 

 For any original transition   has to its accept state, swap with a series of transitions that go to the leftmost cell of the 

tape, try to do one more left step disregarding any mark (the only states that will not do the right-step-left-step bypass 

as described previously), and then go to the accept state. 

Now we define   as follows: 

“On input 〈   〉: 

 Construct    as described above, with respect to the input  . 

 Run   on 〈    〉. If it accepts, accept. Otherwise, reject.” 

The construction of    for any given   makes sure that any attempts to go left from the leftmost tape cell are removed, by 

doing the original transition by going right and back left to the first cell again. Keeping the first cell marked makes sure 

there will be no attempts to go left from the leftmost cell during the simulation (until an accept state). Only when   

accepts  ,    will attempt a left step from the leftmost tape cell. Therefore   accepts   if and only if    will attempt to do 

a left step from the leftmost tape cell on the input  . 

 

5.15) 

Let        *〈   〉                                                                                +. 

Following is a description of a TM   that decides       : 

“On input 〈   〉: 

 Simulate   for     steps. If encountered a left move, accept. 

 Simulate   for additional       steps. If encountered a left move, accept. Otherwise, reject. 

 At any point if   halts (accepts or rejects  ), and did not make a left move thus far, reject. 

If   only moves to the right, after     steps it will encounter only blanks. At this point, it is sufficient to simulate only 

additional       steps, as if there is no left move during that step sequence, we either halt, or detect a cycle, since all 

symbols read at this part of the tape are always blanks. During those       steps, if none of the states took a left move 

over a blank symbol, we will keep moving only right. 

 


