CS525 \ lec09 2012-03-07 Ariel Stolerman

Time Complexity (Chapters 7.1, 7.2)
Definition:
Let f,g: S — N be two functions, then we say “f is dominated by g”, written f < gif3c > 0Vs € S: f(s) < c - g(s).
Also: “g dominates f”.
f,g are co-dominantif f < g,g < f.
g strictly dominates f if f < g A—=(g~f) —the “~” denotes co-dominance.
Properties:
e Reflexivity: f < f —simply choose ¢ = 1.
e Transitivity: f < g, g<h=>f<h
Proof: Vs[f(s) < c-g(s)]AVs[g(s) <d-h(s)] > Vs[f(s) <c-d-h(s)] wherec-d > 0.
e Not a symmetric, not a total order: for instance, sin and cos (on S = R).
Theorem 2.5.2
Let £, fi, f2,. 9,91, 92: S = R2%, and let ¢ > 0, then:
i. f~c-f:
We need to show f < c-f andc-f < f, so we need to find a d > 0 such that Vs € S: f(s) < d - c- f(s) — we can set
d= %and then there’s equality. Since ¢ > 0 then d = %is defined.
Next, let e > O such that c - f(s) < w - f(s) —we can choose e := ¢ > 0.
i. ASLANGSG>Hh+t0<L+92A 01 0.
Proof:
fi<fa=3¢>0:Vs fi(s) < c- fr(s)
g1 <g;=>3d>0:Vs g,(s) <d-g,(s)
Adding them together:
fis) +g1(s) <c-fo(s)+d-g,(s) < e(fz(s) + gz(s)) —how do we choose e? We can choose e := max{c, d}, and it will
satisfy the last <. For product we can choose e = ¢ - d to derive the same result.
iv. max(f,g)~f+g:
e First direction: Vs max(f,g) (s) < 1-(f + g)(s)
e Second direction: Vs f(s) + g(s) < 2 -max(f, g) (s) since f < max(f, g) and f < max(f, g)
v. 1SfA1<g=f+g=f-gwherelisthe constantfunction 1.

Vs1<c-f(s)= % < f(s) and since ¢ > 0 then % is defined and > 0 as well. it means that f is always greater than some

positive constant.
The proof takes f < f,1 < g and derives f < f - g, from previous sections. The same is shown for f < f - g and then by
previous sections f + g < f - g.

viii. If S1, S, € S, f < gonS;and f < gon S, then f < gon S;US,.

CS525 \ lec09 2012-03-07 Ariel Stolerman

If|S| = 1and f, g: S > R>° positive functions then f~g on S:

={s},f(s),g(s) >0= f(s) <— f() -g(s) where £ ? is a constant since there is only one s € S.

On any finite set, any two positive functions are co-dominant.

The finiteness is important for the theorem. For instance, take S =N, f = 1, g(n) = n, then for any constant c >0 g
strictly dominates f so the two are not equivalent.

Theorem

Let k > 0 be a positive integer, then 1% + 2% + 3% + ... 4 plpk+?

Proof:

Consider f(x) = x¥. Looking at the graph of the function, we can enclose rectangles between [0,1],[1,2],[2,3] ... with the

maximum value of f in that rectangle, i.e. the area of the 1% is 1%, of the second is 2% and so on =
n k+1

1k+...+nk2f xkox = k+1n — N
0 k+1 | k+1

nf < (k+ D(AF + -+ nk) = nftt g 1k 4+ o0k

The other direction is taking the area of the rectangle below the function.
Exercise 2.5.5

Va >0 Inx < x% on R*%:

Proof:

@ = galnx > alnx =>Inx <= x and is our positive constant.

ey= z:k Okv

X

Computing time functions

The constant ¢ makes step-count functions machine-independent, because every basic operation on machine M; can be
simulated by at most ¢ basic operations on machine M,, so t;(w) < ¢ - t,(w) and vice-versa, so t; ~t,.

Set of inputs S = Uj2, S; such that S; is a finite set for all i.

e Maximum computing time function: t; (i) = max;es, t4(s)

e Minimum computing time function: t; (i) = mingcg, t4(s)

e Average: t;(i) = (Zsesi tA(S))/ISiI

CS525 \ lec09 2012-03-07 Ariel Stolerman

Let L = {0%1* | k > 0}

n = the length of the input.

1) A TM that decides it:

e Scan:n steps

o gpasses over < n? ~n?

The total: ~n?

2)

e Scan: n steps.

e Scan:total 0’s, 1's are of an even number
e Mark every other 0, every other 1, and loop until all marked.
The total: nlgn

Note: log, ~ logg

3) 2 tapes: time ~n

Theorem:

Simulating a k-tape TM with a single tape TM, the computing time is at most squared. Formally:

Any computation on a k-tape TM that takes time t(n) where n is the length of the input, can be simulated on a single tape
TM in time t(n)?2.

The idea of the proof is that for each of the t(n) steps of the k-tape machine, we need to do at most k - t(n) steps,

concluding to a t(n)? time.

Simulating non-deterministic t(n) will become a deterministic bt™.

The book denotes “2°((M)” Lyt O is a set. The correct way is: 26t = (2€)t™ where b = 2€.
Note that the base matters: 2™ < 4™ (strictly dominated), so the ¢ matters in the power.

We simulated non-determinism by using a 3-tape TM with:

e Non-writable input tape.

e Simulation tape.

e Bookkeeping tape for enumerating over all “choices” in the non-determinism tree.

But, this computation is very expensive — exponential.

Definition:
P = Ujy_, TIME (n*), where TIME (n*) is the class of problems that can be solved by a deterministic Turing machine.

Note that the number of tapes doesn’t matter because it is time-class invariant (at most squares the time).

CS525 \ lec09 2012-03-07 Ariel Stolerman

Example:
Let G be a graph, and s, t nodes in the graph. Is there a path from s to t?

Brute-force is exponential. Of course it can be easily done in polynomial time.

