Time Complexity (Chapters 7.1, 7.2)

Definition:

Let $f, g: S \to \mathbb{N}$ be two functions, then we say "f is dominated by g", written $f \leq g$ if $\exists c > 0 \forall s \in S: f(s) \leq c \cdot g(s)$. Also: "g dominates f".

f, g are co-dominant if $f \leq g, g \leq f$.

g strictly dominates f if $f \leq g \land \neg (g \sim f)$ – the " \sim " denotes co-dominance.

Properties:

- Reflexivity: $f \le f$ simply choose c = 1.
- Transitivity: $f \leq g, g \leq h \Rightarrow f \leq h$ Proof: $\forall s[f(s) \leq c \cdot g(s)] \land \forall s[g(s) \leq d \cdot h(s)] \Rightarrow \forall s[f(s) \leq c \cdot d \cdot h(s)]$ where $c \cdot d > 0$.
- Not a symmetric, not a total order: for instance, sin and cos (on $S = \mathbb{R}$).

Theorem 2.5.2

Let $f, f_1, f_2, g, g_1, g_2 \colon S \to \mathbb{R}^{\geq 0}$, and let c > 0, then:

i. $f \sim c \cdot f$:

We need to show $f \le c \cdot f$ and $c \cdot f \le f$, so we need to find a d > 0 such that $\forall s \in S : f(s) \le d \cdot c \cdot f(s)$ – we can set $d = \frac{1}{c}$ and then there's equality. Since c > 0 then $d = \frac{1}{c}$ is defined.

Next, let e > 0 such that $c \cdot f(s) \le w \cdot f(s)$ – we can choose e := c > 0.

ii.
$$f_1 \leq f_2 \wedge g_1 \leq g_2 \Rightarrow f_1 + g_1 \leq f_2 + g_2, f_1 \cdot g_1 \leq f_2 \cdot g_2$$

Proof:

$$f_1 \le f_2 \Rightarrow \exists c > 0 : \forall s \ f_1(s) \le c \cdot f_2(s)$$

$$g_1 \leq g_2 \Rightarrow \exists d > 0 : \forall s \ g_1(s) \leq d \cdot g_2(s)$$

Adding them together:

 $f_1(s) + g_1(s) \le c \cdot f_2(s) + d \cdot g_2(s) \le e(f_2(s) + g_2(s))$ – how do we choose e? We can choose $e := \max\{c, d\}$, and it will satisfy the last \le . For product we can choose $e = c \cdot d$ to derive the same result.

iv. $\max(f, g) \sim f + g$:

- First direction: $\forall s \max(f, g)(s) \le 1 \cdot (f + g)(s)$
- Second direction: $\forall s \ f(s) + g(s) \le 2 \cdot \max(f,g)(s)$ since $f \le \max(f,g)$ and $f \le \max(f,g)$
- v. $1 \le f \land 1 \le g \Rightarrow f + g \le f \cdot g$ where 1 is the constant function 1.

 $\forall s \ 1 \le c \cdot f(s) \Rightarrow \frac{1}{c} \le f(s)$ and since c > 0 then $\frac{1}{c}$ is defined and > 0 as well. it means that f is always greater than some positive constant.

The proof takes $f \le f$, $1 \le g$ and derives $f \le f \cdot g$, from previous sections. The same is shown for $f \le f \cdot g$ and then by previous sections $f + g \le f \cdot g$.

viii. If $S_1, S_2 \subset S$, $f \leq g$ on S_1 and $f \leq g$ on S_2 then $f \leq g$ on $S_1 \cup S_2$.

If |S| = 1 and $f, g: S \to \mathbb{R}^{>0}$ positive functions then $f \sim g$ on S:

$$S = \{s\}, f(s), g(s) > 0 \Rightarrow f(s) \le \frac{f(s)}{g(s)} \cdot g(s)$$
 where $\frac{f(s)}{g(s)}$ is a constant since there is only one $s \in S$.

On any finite set, any two positive functions are co-dominant.

The finiteness is important for the theorem. For instance, take $S = \mathbb{N}$, $f \equiv 1$, g(n) = n, then for any constant c > 0 g strictly dominates f so the two are not equivalent.

Theorem

Let k > 0 be a positive integer, then $1^k + 2^k + 3^k + \cdots + n^k \sim n^{k+1}$.

Proof:

Consider $f(x) = x^k$. Looking at the graph of the function, we can enclose rectangles between [0,1], [1,2], [2,3] ... with the maximum value of f in that rectangle, i.e. the area of the 1st is 1^k , of the second is 2^k and so on \Rightarrow

$$1^{k} + \dots + n^{k} \ge \int_{0}^{n} x^{k} \partial x = \frac{1}{k+1} x^{k+1} |_{0}^{n} = \frac{n^{k+1}}{k+1} \Rightarrow$$

$$n^{k+1} \le (k+1)(1^k + \dots + n^k) \Rightarrow n^{k+1} \le 1^k + \dots + n^k$$

The other direction is taking the area of the rectangle below the function.

Exercise 2.5.5

 $\forall a > 0 \ln x \leq x^a \text{ on } \mathbb{R}^{\geq 1}$:

Proof

$$x^a = e^{a \ln x} \geq \sup_{e^{\mathcal{Y}} = \sum_{k=0}^{\infty} \frac{\mathcal{Y}^k}{k!}} a \ln x \Rightarrow \ln x \leq \frac{1}{a} x^a \text{ and } \frac{1}{a} \text{ is our positive constant.}$$

Computing time functions

The constant c makes step-count functions machine-independent, because every basic operation on machine M_1 can be simulated by at most c basic operations on machine M_2 , so $t_1(w) \le c \cdot t_2(w)$ and vice-versa, so $t_1 \sim t_2$.

Set of inputs $S = \bigcup_{i=1}^{\infty} S_i$ such that S_1 is a finite set for all i.

- Maximum computing time function: $t_A^+(i) := \max_{s \in S_i} t_A(s)$
- Minimum computing time function: $t_A^-(i) := \min_{s \in S_i} t_A(s)$
- Average: $t_A^*(i) := (\sum_{s \in S_i} t_A(s))/|S_i|$

Let
$$L = \{0^k 1^k \mid k > 0\}$$

n :=the length of the input.

1) A TM that decides it:

- Scan: n steps
- $\frac{n}{2}$ passes over $\leq n$? $\sim n^2$

The total: $\sim n^2$

2)

- Scan: *n* steps.
- Scan: total 0's, 1's are of an even number
- Mark every other 0, every other 1, and loop until all marked.

The total: $n \lg n$ Note: $\log_{\alpha} \sim \log_{\beta}$

3) 2 tapes: time $\sim n$

Theorem:

Simulating a *k*-tape TM with a single tape TM, the computing time is at most squared. Formally:

Any computation on a k-tape TM that takes time t(n) where n is the length of the input, can be simulated on a single tape TM in time $t(n)^2$.

The idea of the proof is that for each of the t(n) steps of the k-tape machine, we need to do at most $k \cdot t(n)$ steps, concluding to a $t(n)^2$ time.

Simulating non-deterministic t(n) will become a deterministic $b^{t(n)}$.

The book denotes " $2^{O(t(n))}$ ", but O is a set. The correct way is: $2^{c \cdot t(n)} = (2^c)^{t(n)}$ where $b = 2^c$.

Note that the base matters: $2^n < 4^n$ (strictly dominated), so the c matters in the power.

We simulated non-determinism by using a 3-tape TM with:

- Non-writable input tape.
- Simulation tape.
- Bookkeeping tape for enumerating over all "choices" in the non-determinism tree.

But, this computation is very expensive – exponential.

Definition:

 $P = \bigcup_{k=1}^{\infty} TIME(n^k)$, where $TIME(n^k)$ is the class of problems that can be solved by a deterministic Turing machine.

Note that the number of tapes doesn't matter because it is time-class invariant (at most squares the time).

Example:

Let G be a graph, and s, t nodes in the graph. Is there a path from s to t?

Brute-force is exponential. Of course it can be easily done in polynomial time.