
1
CS525 \ lec09 2012-03-07 Ariel Stolerman

Time Complexity (Chapters 7.1, 7.2)

Definition:

Let be two functions, then we say “ is dominated by ”, written if () ().

Also: “ dominates ”.

 are co-dominant if .

 strictly dominates if ⋀ () – the “~” denotes co-dominance.

Properties:

 Reflexivity: – simply choose .

 Transitivity:

Proof: , () ()- ⋀ , () ()- , () ()- where .

 Not a symmetric, not a total order: for instance, sin and cos (on).

Theorem 2.5.2

Let
 , and let , then:

i. :

We need to show and , so we need to find a such that () () – we can set

 and then there’s equality. Since then

 is defined.

Next, let such that () () – we can choose .

ii. ⋀

Proof:

 () ()

 () ()

Adding them together:

 () () () () (() ()) – how do we choose ? We can choose * +, and it will

satisfy the last . For product we can choose to derive the same result.

iv. () :

 First direction: () () ()()

 Second direction: () () () () since () and ()

v. ⋀ where 1 is the constant function 1.

 ()

 () and since then

 is defined and as well. it means that is always greater than some

positive constant.

The proof takes and derives , from previous sections. The same is shown for and then by

previous sections .

viii. If , on and on then on .

2
CS525 \ lec09 2012-03-07 Ariel Stolerman

If | | and positive functions then on :

 * + () () ()
 ()

 ()
 () where

 ()

 ()
 is a constant since there is only one .

On any finite set, any two positive functions are co-dominant.

The finiteness is important for the theorem. For instance, take () , then for any constant

strictly dominates so the two are not equivalent.

Theorem

Let be a positive integer, then .

Proof:

Consider () . Looking at the graph of the function, we can enclose rectangles between , - , - , - with the

maximum value of in that rectangle, i.e. the area of the 1
st

 is , of the second is and so on

 ∫

 |

 ()()

The other direction is taking the area of the rectangle below the function.

Exercise 2.5.5

 on :

Proof:

 ∑

 and

 is our positive constant.

Computing time functions

The constant makes step-count functions machine-independent, because every basic operation on machine can be

simulated by at most basic operations on machine , so () () and vice-versa, so .

Set of inputs

 such that is a finite set for all .

 Maximum computing time function:
 () ()

 Minimum computing time function:
 () ()

 Average:
 () (∑ ()

) | |

3
CS525 \ lec09 2012-03-07 Ariel Stolerman

Let * | +

 the length of the input.

1) A TM that decides it:

 Scan: steps

 passes over ?

The total:

2)

 Scan: steps.

 Scan: total 0’s, 1’s are of an even number

 Mark every other 0, every other 1, and loop until all marked.

The total:

Note:

3) 2 tapes: time

Theorem:

Simulating a -tape TM with a single tape TM, the computing time is at most squared. Formally:

Any computation on a -tape TM that takes time () where is the length of the input, can be simulated on a single tape

TM in time () .

The idea of the proof is that for each of the () steps of the -tape machine, we need to do at most () steps,

concluding to a () time.

Simulating non-deterministic () will become a deterministic ().

The book denotes “ (())”, but is a set. The correct way is: () () () where .

Note that the base matters: (strictly dominated), so the matters in the power.

We simulated non-determinism by using a 3-tape TM with:

 Non-writable input tape.

 Simulation tape.

 Bookkeeping tape for enumerating over all “choices” in the non-determinism tree.

But, this computation is very expensive – exponential.

Definition:

 ()
 , where () is the class of problems that can be solved by a deterministic Turing machine.

Note that the number of tapes doesn’t matter because it is time-class invariant (at most squares the time).

4
CS525 \ lec09 2012-03-07 Ariel Stolerman

Example:

Let be a graph, and nodes in the graph. Is there a path from to ?

Brute-force is exponential. Of course it can be easily done in polynomial time.

