Midterm 2 solutions

(1)

Let T be a binary tree that has a root, and assume that every node has exactly two children (note that that makes T infinite).

a. Show that the set of nodes in *T* is countable.

b. Using a diagonalization argument show that the set of all infinite paths from the root is uncountable.

Solution:

a.

To prove that the set of nodes is countable we define a correspondence $\mathbb{N} \to T$ by simply counting the nodes level by level, from left to right. We denote this mapping f, where f(1) is the root, and recursively:

f(2k) =Left child of f(k)

f(2k+1) =Right child of f(k)

We can look at the binary length of the input k which is simply the level in which the node resides: k is mapped to the node at level $\lfloor \lg_2 k \rfloor$, node number $k - 2^{\lfloor \lg_2 k \rfloor}$ at that level (starting count at 0). The $\langle level, node \rangle$ result pair equals $\langle \lfloor \lg_2 k \rfloor, k - 2^{\lfloor \lg_2 k \rfloor} \rangle$.

Next we need to show it is a bijective mapping, however it is immediate: for different sources we always end up at different nodes, so it is one-to-one; for any node we can determine its source k by the level and location on that level, therefore it is onto.

b.

Following is a proof that the set of all infinite paths from the root is **uncountable**:

We can identify each path by an infinite sequence of $\{0,1\}$'s, where 0 indicates choosing the left child and 1 – the right. Denote the set of paths *P*. Assume *P* is countable, then there is a correspondence $f: \mathbb{N} \to P$:

п	f(n)
1	0111010010101
2	1100101000101
3	0000101000011

We define a sequence $b = (\overline{b_{0,0}}, \overline{b_{1,1}}, ...)$ - each coordinate *i* is the negation of f(i). But *b* must have a *j* such that f(j) = b, but then $b_{j,j} \neq b_{j,j}$ – a contradiction.

(2)

Show that the language $L2 = \{\langle A \rangle \mid A \text{ is a DFA that has no useless state}\}$ is decidable (a useless state is a state that is not entered for any input string).

Solution:

The idea: given a string s:

- 1. Decide whether *s* is an encoding of a DFA. If so, denote it the DFA *A*.
- 2. For all states σ in A do the following:

Ariel Stolerman

- a. Make σ the only accepting state and call the resulting DFA *B*.
- b. Use decider for emptiness of DFAs to decide whether $L(B) = \emptyset$.
- 3. If $L(B) \neq \emptyset$ for all σ , then none of the states is useless, so $s \in L_2$. Otherwise, $s \notin L_2$.

(3)

Show that the language $L_3 = \{ \langle M, N \rangle \mid M, N \text{ are TMs and } L(M) \subset L(N) \}$ is undecidable.

Solution:

By reduction from A_{TM} :

Given (M, w), build 2 TMs, (M, N) such that $L(M) \subset L(N) \Leftrightarrow M$ accepts w.

Let *N* be a TM such that $L(N) = \emptyset$. Next, we construct a machine *R*:

- Simulate *M* on *w*.
- If it accepts, $L(R) = \Sigma^*$, otherwise $L(R) = \emptyset$.

If M doesn't accept w, then $L(M) \subset L(N)$. If M accepts w, $L(M) = \Sigma^*$ is NOT a subset of L(N).

We're actually showing a reduction from $\overline{A_{TM}}$, which is also undecidable, therefore L_4 is undecidable.

Alternative:

Reduce $E_{TM} \leq_m L_4$: define R as above, $L(N) = \emptyset$ and then M accepts $w \Leftrightarrow L(M) \subset L(N)$.

(4)

Show that the language $L_4 = \{\langle M \rangle \mid M \text{ is a TM and } |L(M)| = 1\}$ is not Turing-recognizable.

Solution:

Note: $\overline{A_{TM}}$ is not Turing-recognizable, so we can try to show $\overline{A_{TM}} \leq_m L_4$, or equivalently: $A_{TM} \leq_m \overline{L_4}$ where: $\overline{L_4} = \{\langle M \rangle \mid M \text{ is a TM and } |L(M)| \neq 1\}$. We create a machine N:

- If the input is 1, accept.
- Simulate *M* on *w*.
- If *M* accepts *w*, then accept any input. Otherwise, reject (all but the input 1).

So $1 \in L(N)$ in any case, but if M accepts w there are even more words in the language. Then we get: M accepts $w \Leftrightarrow |L(N)| = |\Sigma^*| \neq 1$, as required.

(5)

Show that any infinite subset of MIN_{TM} is not Turing-recognizable.

Solution:

Let $MIN_{TM}^* \subset MIN_{TM}$ be an infinite subset. Assume (by contradiction) that MIN_{TM}^* **IS** Turing-recognizable, then MIN_{TM}^* can be enumerated by some enumerator *E*. From this point the proof is exactly like for MIN_{TM} in the book. we build *C*:

- Obtain $\langle C \rangle$.
- Use *E* to find a TM $D \in MIN^*_{TM}$ such that $|\langle C \rangle| < |\langle D \rangle|$.

Therefore the assumption that an enumerator E exists is false, and so MIN^*_{TM} is not Turing-recognizable.

(6)

a. Is the statement $\forall x \exists y [x \cdot y = 1]$ a member of $Th(\mathbb{N}, \cdot)$?

b. Is the statement $\forall x \exists y [x \cdot y = 1]$ a member of $Th(\mathbb{Q}, \cdot)$?

c. Give a formula that defines the usual relation \leq , "less than or equal to", in $(\mathbb{R}, +, \cdot)$. The only relations you may use in your definition are "+" and ".".

Solution:

a.

The statement is NOT a member of $Th(\mathbb{N},\cdot)$, because for x = 2 we have that $\forall y: 2y \neq 1$ (the idea: $\frac{1}{2} \notin \mathbb{N}$).

b.

The statement is NOT a member of $Th(\mathbb{N}, \cdot)$, because for $x = 0, \forall y: oy \neq 1$.

c.

We express " $x \le y$ " in (\mathbb{R} , +,·) as follows:

 $\exists z[x + z \cdot z = y]$

 $z \cdot z$ is the square of z, and all squares are non-negative.

Note:

We can express "x < y" by imposing z = 0 as follows: 0 is the only $z \in \mathbb{R}$ such that z + z = z, so:

$$\exists z [(z + z = z) \land (x + z \cdot z = y)]$$

Or alternatively just the first plus " $x \neq y$ ":

$$\exists z[x + z \cdot z = y] \land (x \neq y)$$

Group-work: understanding Theorem 6.12

 $Th(\mathbb{N}, +)$ is decidable.

The proof in the book (page 227) gives a decision procedure, and the construction is similar to exercise 1.32, a DFA that $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

accepts all encodings of correct binary additions, for instance $\begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}$. It did it by remembering at each state whether

the carry is 0 or 1, checking the correctness from the LSB toward the MSB.

Since the set of regular languages is closed under union, complementation and intersection, a combination of several such operations is still decidable with a DFA.

But, we have quantifiers in our formula: $\varphi = Q_1 x_1 \dots Q_l x_l [\psi]$, where ψ is a quantifiers-free formula (that is discussed above and can be decided by a DFA).

We follow the construction of the book for $\forall x \exists y [y + y = x]$. This is a case where l = 2 (we have 2 quantifiers). Let $\varphi_i = Q_{i+1}x_{i+1} \dots Q_l x_l[\psi]$, then $\varphi_l = \psi$, and it has l free variables (no quantifiers to bound them).

Let A_i be a decider for φ_i and the input alphabet consists of *i*-tuples: $\Sigma_i = \begin{cases} \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_i \end{bmatrix}, \dots \end{cases}$, $b_j \in \{0,1\}$. For instance, $\Sigma_1 = \{0,1\}$,

$\Sigma_2 = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}.$

The \forall are taken care of by taking $\neg \exists \neg$ instead. The \exists is taken care of by using a non-deterministic automata that guesses the additional coordinate i + 1.