CS525 \ lec08 2012-02-29 Ariel Stolerman

Midterm 2 solutions

(1)

Let T be a binary tree that has a root, and assume that every node has exactly two children (note that that makes T
infinite).

a. Show that the set of nodes in T is countable.

b. Using a diagonalization argument show that the set of all infinite paths from the root is uncountable.

Solution:

a.

To prove that the set of nodes is countable we define a correspondence N — T by simply counting the nodes level by level,
from left to right. We denote this mapping f, where f (1) is the root, and recursively:

f(2k) = Left child of f(k)

f(2k + 1) = Right child of f (k)

We can look at the binary length of the input k which is simply the level in which the node resides: k is mapped to the node
at level |lg, k|, node number k — 2U182 %] at that level (starting count at 0). The (level, node) result pair equals {|lg, k|, k —
2llgz kJ)_

Next we need to show it is a bijective mapping, however it is immediate: for different sources we always end up at different
nodes, so it is one-to-one; for any node we can determine its source k by the level and location on that level, therefore it is
onto.

b.

Following is a proof that the set of all infinite paths from the root is uncountable:

We can identify each path by an infinite sequence of {0,1}’s, where 0 indicates choosing the left child and 1 — the right.

Denote the set of paths P. Assume P is countable, then there is a correspondence f:N — P:

f(m)
0111010010101...
1100101000101...
0000101000011...

We define a sequence b = (bg g, by 1, ...) - each coordinate i is the negation of f(i). But b must have a j such that f(j) = b,

WNH:

but then b; ; # b; ; — a contradiction.

(2)

Show that the language L2 = {(A) | A is a DFA that has no useless state} is decidable (a useless state is a state that is
not entered for any input string).

Solution:

The idea: given a string s:

1. Decide whether s is an encoding of a DFA. If so, denote it the DFA A.

2. For all states o in A do the following:

CS525 \ lec08 2012-02-29 Ariel Stolerman

a. Make o the only accepting state and call the resulting DFA B.
b. Use decider for emptiness of DFAs to decide whether L(B) = Q.

3. If L(B) # @ for all g, then none of the states is useless, so s € L,. Otherwise, s & L,.

(3)

Show that the language L; = {{M,N) | M, N are TMs and L(M) c L(N)} is undecidable.
Solution:

By reduction from Ary:

Given (M, w), build 2 TMs, (M, N) such that L(M) c L(N) & M accepts w.

Let N be a TM such that L(N) = @. Next, we construct a machine R:

e Simulate M on w.

e |Ifitaccepts, L(R) = X*, otherwise L(R) = 0.

If M doesn’t accept w, then L(M) < L(N). If M accepts w, L(M) = X* is NOT a subset of L(N).
We're actually showing a reduction from m, which is also undecidable, therefore L, is undecidable.
Alternative:

Reduce Ery <,, L,: define R as above, L(N) = @ and then M accepts w & L(M) < L(N).

(4)

Show that the language L, = {{M) | M is a TM and |L(M)| = 1} is not Turing-recognizable.

Solution:

Note: Ay, is not Turing-recognizable, so we can try to show Ary, <, L,, or equivalently: Ay <,, L, where:

L, ={(M)|MisaTM and |L(M)| # 1}. We create a machine N:

e Iftheinputis 1, accept.

e Simulate M onw.

e If M accepts w, then accept any input. Otherwise, reject (all but the input 1).

So 1 € L(N) in any case, but if M accepts w there are even more words in the language. Then we get: M accepts

w & [L(N)| = |Z¥| # 1, as required.

(5)

Show that any infinite subset of MINy,, is not Turing-recognizable.

Solution:

Let MIN7,, € MINpy, be an infinite subset. Assume (by contradiction) that MIN7,, 1S Turing-recognizable, then MINy,, can
be enumerated by some enumerator E. From this point the proof is exactly like for MIN,, in the book. we build C:

e Obtain (C).

e UseE tofindaTM D € MINj,, such that [(C)| < [(D)|.

CS525 \ lec08 2012-02-29 Ariel Stolerman

e Simulate D.

Therefore the assumption that an enumerator E exists is false, and so MINy,, is not Turing-recognizable.

(6)

a. Is the statement Vx3y[x - y = 1] a member of Th(N,")?

b. Is the statement Vx3y[x - y = 1] a member of Th(Q,")?

c. Give a formula that defines the usual relation <, “less than or equal to”, in (R, +,"). The only relations you may use in
your definition are “+” and “-”.

Solution:

a.
The statement is NOT a member of Th(N,"), because for x = 2 we have that Vy: 2y # 1 (the idea: ; ¢ N).

b.
The statement is NOT a member of Th(N,-), because for x = 0, Vy: oy # 1.
C.
We express “x < y” in (R, +,-) as follows:
Az[x+z-z=1y]
z + z is the square of z, and all squares are non-negative.
Note:
We can express “x < y” by imposing z = 0 as follows: 0 is the only z € R such that z + z = z, so:
z[z+z=2)A(x+z-z=1y)]

Or alternatively just the first plus “x # y”:

Az[x +z-z=yIA(x = y)

Group-work: understanding Theorem 6.12

Th(N, +) is decidable.

The proof in the book (page 227) gives a decision procedure, and the construction is similar to exercise 1.32, a DFA that

07 17 1
accepts all encodings of correct binary additions, for instance [0] , [0 , [1] It did it by remembering at each state whether
11 10l Lo

the carry is 0 or 1, checking the correctness from the LSB toward the MSB.

Since the set of regular languages is closed under union, complementation and intersection, a combination of several such
operations is still decidable with a DFA.

But, we have quantifiers in our formula: ¢ = Q,x; ... Q;x;[], where ¥ is a quantifiers-free formula (that is discussed above

and can be decided by a DFA).

CS525 \ lec08 2012-02-29 Ariel Stolerman

We follow the construction of the book for Vx3y[y + y = x]. This is a case where [= 2 (we have 2 quantifiers).

Let @; = Qi11Xi41 - Q1x;[W], then @; = ¥, and it has [free variables (no quantifiers to bound them).
b,
Let A; be a decider for ¢; and the input alphabet consists of i-tuples: £; = b, , - ¢, bj € {0,1}. For instance, Z; = {0,1},

b;

%= (o] ol G [}

The V are taken care of by taking —=3— instead. The 3 is taken care of by using a non-deterministic automata that guesses

the additional coordinate i + 1.

