
1
CS525 \ lec08 2012-02-29 Ariel Stolerman

Midterm 2 solutions

(1)

Let be a binary tree that has a root, and assume that every node has exactly two children (note that that makes

infinite).

a. Show that the set of nodes in is countable.

b. Using a diagonalization argument show that the set of all infinite paths from the root is uncountable.

Solution:

a.

To prove that the set of nodes is countable we define a correspondence by simply counting the nodes level by level,

from left to right. We denote this mapping , where () is the root, and recursively:

 () Left child of ()

 () Right child of ()

We can look at the binary length of the input which is simply the level in which the node resides: is mapped to the node

at level ⌊ ⌋, node number ⌊ ⌋ at that level (starting count at 0). The ⌌ ⌍ result pair equals ⌌⌊ ⌋

 ⌊ ⌋⌍.

Next we need to show it is a bijective mapping, however it is immediate: for different sources we always end up at different

nodes, so it is one-to-one; for any node we can determine its source by the level and location on that level, therefore it is

onto.

b.

Following is a proof that the set of all infinite paths from the root is uncountable:

We can identify each path by an infinite sequence of * +’s, where 0 indicates choosing the left child and 1 – the right.

Denote the set of paths . Assume is countable, then there is a correspondence :

 ()
1 0111010010101…

2 1100101000101…

3 0000101000011…

We define a sequence (̅̅ ̅̅ ̅ ̅̅ ̅̅̅) - each coordinate is the negation of (). But must have a such that () ,

but then – a contradiction.

(2)

Show that the language *⌌ ⌍ + is decidable (a useless state is a state that is

not entered for any input string).

Solution:

The idea: given a string :

1. Decide whether is an encoding of a DFA. If so, denote it the DFA .

2. For all states in do the following:

2
CS525 \ lec08 2012-02-29 Ariel Stolerman

a. Make the only accepting state and call the resulting DFA .

b. Use decider for emptiness of DFAs to decide whether () .

3. If () for all , then none of the states is useless, so . Otherwise, .

(3)

Show that the language *⌌ ⌍ () ()+ is undecidable.

Solution:

By reduction from :

Given ⌌ ⌍, build 2 TMs, ⌌ ⌍ such that () () accepts .

Let be a TM such that () . Next, we construct a machine :

 Simulate on .

 If it accepts, () , otherwise () .

If doesn’t accept , then () (). If accepts , () is NOT a subset of ().

We’re actually showing a reduction from ̅̅ ̅̅ ̅̅ , which is also undecidable, therefore is undecidable.

Alternative:

Reduce : define as above, () and then accepts () ().

(4)

Show that the language *⌌ ⌍ () + is not Turing-recognizable.

Solution:

Note: ̅̅ ̅̅ ̅̅ is not Turing-recognizable, so we can try to show ̅̅ ̅̅ ̅̅ , or equivalently: ̅̅ ̅ where:

 ̅̅ ̅ *⌌ ⌍ () +. We create a machine :

 If the input is 1, accept.

 Simulate on .

 If accepts , then accept any input. Otherwise, reject (all but the input 1).

So () in any case, but if accepts there are even more words in the language. Then we get: accepts

 () , as required.

(5)

Show that any infinite subset of is not Turing-recognizable.

Solution:

Let
 be an infinite subset. Assume (by contradiction) that

 IS Turing-recognizable, then
 can

be enumerated by some enumerator . From this point the proof is exactly like for in the book. we build :

 Obtain ⌌ ⌍.

 Use to find a TM
 such that ⌌ ⌍ ⌌ ⌍ .

3
CS525 \ lec08 2012-02-29 Ariel Stolerman

 Simulate .

Therefore the assumption that an enumerator exists is false, and so
 is not Turing-recognizable.

(6)

a. Is the statement , - a member of ()?

b. Is the statement , - a member of ()?

c. Give a formula that defines the usual relation , “less than or equal to”, in (). The only relations you may use in

your definition are “ ” and “ ”.

Solution:

a.

The statement is NOT a member of (), because for we have that (the idea:

).

b.

The statement is NOT a member of (), because for , .

c.

We express “ ” in () as follows:

 , -

 is the square of , and all squares are non-negative.

Note:

We can express “ ” by imposing as follows: 0 is the only such that , so:

 ,() ()-

Or alternatively just the first plus “ ”:

 , - ()

Group-work: understanding Theorem 6.12

 () is decidable.

The proof in the book (page 227) gives a decision procedure, and the construction is similar to exercise 1.32, a DFA that

accepts all encodings of correct binary additions, for instance [

] [

] [

]. It did it by remembering at each state whether

the carry is 0 or 1, checking the correctness from the LSB toward the MSB.

Since the set of regular languages is closed under union, complementation and intersection, a combination of several such

operations is still decidable with a DFA.

But, we have quantifiers in our formula: , -, where is a quantifiers-free formula (that is discussed above

and can be decided by a DFA).

4
CS525 \ lec08 2012-02-29 Ariel Stolerman

We follow the construction of the book for , -. This is a case where (we have 2 quantifiers).

Let , -, then , and it has free variables (no quantifiers to bound them).

Let be a decider for and the input alphabet consists of -tuples: {[

] } * +. For instance, * +,

 {[

] [

] [

] [

]}.

The are taken care of by taking instead. The is taken care of by using a non-deterministic automata that guesses

the additional coordinate .

