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Midterm 2 solutions 

(1) 

Let   be a binary tree that has a root, and assume that every node has exactly two children (note that that makes   

infinite). 

a. Show that the set of nodes in   is countable. 

b. Using a diagonalization argument show that the set of all infinite paths from the root is uncountable. 

Solution: 

a. 

To prove that the set of nodes is countable we define a correspondence     by simply counting the nodes level by level, 

from left to right. We denote this mapping  , where  ( ) is the root, and recursively: 

 (  )   Left child of  ( ) 

 (    )   Right child of  ( ) 

We can look at the binary length of the input   which is simply the level in which the node resides:   is mapped to the node 

at level ⌊    ⌋, node number    ⌊    ⌋ at that level (starting count at 0). The ⌌          ⌍ result pair equals ⌌⌊    ⌋   

 ⌊    ⌋⌍. 

Next we need to show it is a bijective mapping, however it is immediate: for different sources we always end up at different 

nodes, so it is one-to-one; for any node we can determine its source   by the level and location on that level, therefore it is 

onto. 

b. 

Following is a proof that the set of all infinite paths from the root is uncountable: 

We can identify each path by an infinite sequence of *   +’s, where 0 indicates choosing the left child and 1 – the right. 

Denote the set of paths  . Assume   is countable, then there is a correspondence      : 

   ( ) 
1 0111010010101… 

2 1100101000101… 

3 0000101000011… 

We define a sequence   (    ̅̅ ̅̅ ̅     ̅̅ ̅̅̅  ) - each coordinate   is the negation of  ( ). But   must have a   such that  ( )   , 

but then           – a contradiction. 

 

(2) 

Show that the language     *⌌ ⌍                                       + is decidable (a useless state is a state that is 

not entered for any input string). 

Solution: 

The idea: given a string  : 

1. Decide whether   is an encoding of a DFA. If so, denote it the DFA  . 

2. For all states   in   do the following: 
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a. Make   the only accepting state and call the resulting DFA  . 

b. Use decider for emptiness of DFAs to decide whether  ( )   . 

3. If  ( )    for all  , then none of the states is useless, so     . Otherwise,     . 

 

(3) 

Show that the language    *⌌   ⌍                    ( )   ( )+ is undecidable. 

Solution: 

By reduction from    : 

Given ⌌   ⌍, build 2 TMs, ⌌   ⌍ such that  ( )   ( )    accepts  . 

Let   be a TM such that  ( )   . Next, we construct a machine  : 

 Simulate   on  . 

 If it accepts,  ( )    , otherwise  ( )   . 

If   doesn’t accept  , then  ( )   ( ). If   accepts  ,  ( )     is NOT a subset of  ( ). 

We’re actually showing a reduction from    ̅̅ ̅̅ ̅̅ , which is also undecidable, therefore    is undecidable. 

Alternative: 

Reduce        : define   as above,  ( )    and then   accepts    ( )   ( ). 

 

(4) 

Show that the language    *⌌ ⌍                   ( )   + is not Turing-recognizable. 

Solution: 

Note:    ̅̅ ̅̅ ̅̅  is not Turing-recognizable, so we can try to show    ̅̅ ̅̅ ̅̅     , or equivalently:        ̅̅ ̅ where: 

  ̅̅ ̅  *⌌ ⌍                   ( )   +. We create a machine  : 

 If the input is 1, accept. 

 Simulate   on  . 

 If   accepts  , then accept any input. Otherwise, reject (all but the input 1). 

So    ( ) in any case, but if   accepts   there are even more words in the language. Then we get:   accepts 

    ( )        , as required. 

 

(5) 

Show that any infinite subset of       is not Turing-recognizable. 

Solution: 

Let      
        be an infinite subset. Assume (by contradiction) that      

  IS Turing-recognizable, then      
  can 

be enumerated by some enumerator  . From this point the proof is exactly like for       in the book. we build  : 

 Obtain ⌌ ⌍. 

 Use   to find a TM        
  such that  ⌌ ⌍   ⌌ ⌍ . 
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 Simulate  . 

Therefore the assumption that an enumerator   exists is false, and so      
  is not Turing-recognizable. 

 

(6) 

a. Is the statement     ,     - a member of   (   )? 

b. Is the statement     ,     - a member of   (   )? 

c. Give a formula that defines the usual relation  , “less than or equal to”, in (     ). The only relations you may use in 

your definition are “ ” and “ ”. 

Solution: 

a. 

The statement is NOT a member of   (   ), because for     we have that         (the idea: 
 

 
  ). 

b. 

The statement is NOT a member of   (   ), because for    ,        . 

c. 

We express “   ” in (     ) as follows: 

  ,       - 

    is the square of  , and all squares are non-negative. 

Note: 

We can express “   ” by imposing     as follows: 0 is the only     such that      , so: 

  ,(     ) (       )- 

Or alternatively just the first plus “   ”: 

  ,       - (   ) 

  

 

Group-work: understanding Theorem 6.12 

  (   ) is decidable. 

The proof in the book (page 227) gives a decision procedure, and the construction is similar to exercise 1.32, a DFA that 

accepts all encodings of correct binary additions, for instance [
 
 
 
]  [

 
 
 
]  [

 
 
 
]. It did it by remembering at each state whether 

the carry is 0 or 1, checking the correctness from the LSB toward the MSB. 

Since the set of regular languages is closed under union, complementation and intersection, a combination of several such 

operations is still decidable with a DFA. 

But, we have quantifiers in our formula:            , -, where   is a quantifiers-free formula (that is discussed above 

and can be decided by a DFA). 
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We follow the construction of the book for     ,     -. This is a case where     (we have 2 quantifiers). 

Let                 , -, then     , and it has   free variables (no quantifiers to bound them). 

Let    be a decider for    and the input alphabet consists of  -tuples:    {[

  
  
 
  

]   }     *   +. For instance,    *   +, 

   {[
 
 
]  [
 
 
]  [
 
 
]  [
 
 
]}.  

The   are taken care of by taking     instead. The   is taken care of by using a non-deterministic automata that guesses 

the additional coordinate    . 


