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Solutions of PS #3 

4.10) 

Let        *〈 〉                   ( )                        +. Following is a proof that        is decidable: 

 Convert the PDA   into a CFG  . 

 Convert   into Chomsky normal form  . 

 Generate every combination of derivations with     steps, where   is the number of variables in  . 

 If we find a derivation with    steps,  ( ) is infinite. Otherwise it is finite. 

 

4.12) 

Let   *〈   〉                                   ( )   ( )+. Following is a proof that   is decidable: 

If  ( )   ( ) then  ( )  ( )   ( ). We apply       on both sides of this equation and return the result. 

 

4.22) 

Let   *〈 〉                                     +. Following is a proof that   is decidable: 

Let    be a decider for     . We go through each state in  , marking it the only accepting state. For each such iteration 

we apply    on that machine, and it will be discovered as empty iff the state that is marked as accepting cannot be reached 

by any computation. 

 

The Busy Beaver Problem 

How many 1’s can an  -state TM write on an initially empty tape (and then stop) [Tibor Rado, 1962] 

This problem is originally defined for Turing machines with an infinite tape to both sides,   *   +, tape initialized with 

only 0’s, and   is the number of operational states (excluding halting states). Denote  ( ) the result of   ( ). 

   :  ( )    since we have to halt after 1 state (thus the maximum #1’s we can write is 1). 

   : 

 A B 

0 1RB 1LA 

1 1LB 1RH 

                               ( )    

   : … 

Definitions: 

  ( )   maximum #1’s with   states 

  ( )   maximum #shift operations with   steps, denoted “Step count” 

 1 2 3 4 5 6 

 ( ) 1 4 6                       

 ( ) 1 6 21 107           ? 
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Theorem 

The function  ( ) is not computable. 

Proof: 

By contradiction, assume we have: 

       that computes  , so given   1’s on the input tape, it writes  ( ) on the input tape. 

        a TM that given   1’s, writes    1’s. 

     a TM that given   1’s writes     1’s. 

Consider the concatenation of the TMs                 , and assume it has    states. Let         
 be an   -

state TM that writes    1’s (with the transitions  (    )  (        ),  (   
  )  (           )). 

Consider                          
, then this should have         states. This machine writes  ( )    

1’s, a contradiction, since any machine with   states should be able to write only   ( ) 1’s. Therefore       does not 

exist, so   is not computable   

Note: we can standardize the TMs above to go back to the beginning of the input tape at the end of their computation, such 

that this way we can simply “glue” them together with no overhead states for the gluing (all overhead is covered with the 

“go back to square 1” part). 

 

Theorem 

The function  ( ) is not computable. 

Proof: 

Similarly to the proof above, only use:                            
 where       wipes all 1’s from the input 

tape. As before it has         states and performs   ( ) shift operations, since the CLEAN forces to perform  ( ) 

shifts only for the cleaning part – so we end up with more than that.   

 

Rado’s Theorem: 

Let       be a computable function, then           ( )   ( )   ( ). 

Proof: think about it… 
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Mapping Reducibility 

Mapping-reducible: a language   is mapping-reducible to language   if there exists a function         such that 

           ( )    and   is computable (there exists a TM that computes it). Notation:     . 

Conversely, if   is undecidable,   is undecidable. 

In addition:       ̅    ̅ (using the same reduction function). 

 

Example: 

           : 

For a given input 〈   〉 we map it to a TM    that halts iff  ( ) accepts. Define    as follows: We simulate   on  . If it 

rejects, loop forever. If it accepts, accept. 

If   accepts  ,    will accept, therefore halt. If   rejects   or loops forever,    will loop forever. Therefore 

〈   〉               . In the cases the input is not a proper pair of TM and a string, we map it to a TM    that is 

not a proper encoding of a TM as well. 

Review: 

 We showed that     is undecidable (using diagonalization): assume some TM   decides    , so we build a machine 

   that given a code of a machine   accepts if   accepts   and reject if   rejects   (using   to check if   halts on 

itself as input). Then we get a contradiction for the computation   (  ), as it should do the opposite of what it does. 

    
̅̅ ̅̅ ̅̅  is not recognizable. 

        is undecidable by a reduction from    :             

 

Example 5.26: 

         : 

For a given TM   we build the pair       where      and    is a TM that rejects always. This way, if  ( )    then 

 (  )   (  )   , and the other way around. 

 

Example 5.27: 

The use of mapping reducibility to prove     is undecidable: 

Given 〈   〉 construct    that does the following: 

On input  , if     then reject. Otherwise simulate   on  . If   accepts, accept. Otherwise, reject. 

Therefore  (  )      does not accept  . 

Note: this is a reduction         
̅̅ ̅̅ ̅. 

Moreover it can be proven that there is no reduction         : if there was such a reduction, then there would be a 

reduction    
̅̅ ̅̅ ̅̅      

̅̅ ̅̅ ̅, but    
̅̅ ̅̅ ̅̅  is not recognizable, therefore it would mean    

̅̅ ̅̅ ̅ is also not Turing-recognizable, but we 

know it is – a contradiction. 
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The recognizing TM   for    
̅̅ ̅̅ ̅ simply enumerates over all possible inputs and simulates the given input TM (in “BFS”: each 

step run   steps of the first   possible inputs). 

 

Theorem 5.30 

     is neither Turing-recognizable nor co-Turing-recognizable. 

Proof: 

     is not Turing-recognizable: 

It suffices to show that          
̅̅ ̅̅ ̅̅ ̅̅ , since then    

̅̅ ̅̅ ̅̅       
̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅      , and    

̅̅ ̅̅ ̅̅  is not Turing-recognizable. Given 

〈   〉 we will create 〈     〉 such that   accepts    (  )   (  ): Let    s.t.  (  )    and    simulates   on  . 

    
̅̅ ̅̅ ̅̅ ̅ is not Turing-recognizable: 

It suffices to show that           since then    
̅̅ ̅̅ ̅̅       

̅̅ ̅̅ ̅̅ ̅̅ , and    
̅̅ ̅̅ ̅̅  is not Turing-recognizable. Given 〈   〉 we will 

create 〈     〉 such that   accepts    (  )   (  ): Let    s.t.  (  )  * + and    rejects all    , and if    , 

simulates   on   and accepts iff it is accepted. 

 

Recursion Theorem 

The Turing machine      prints its own code. 

Lemma 6.1: There exists a computable function         such that  ( ) is the code of a TM    that prints  .   

From that we construct      from two parts   : 

   prints    

  : on input  : 

o Print  ( ) 

o Combine with   

o Print the description 

 


