
1
CS525 \ lec06 2012-02-15 Ariel Stolerman

Solutions of PS #3

4.10)

Let *〈 〉 () +. Following is a proof that is decidable:

 Convert the PDA into a CFG .

 Convert into Chomsky normal form .

 Generate every combination of derivations with steps, where is the number of variables in .

 If we find a derivation with steps, () is infinite. Otherwise it is finite.

4.12)

Let *〈 〉 () ()+. Following is a proof that is decidable:

If () () then () () (). We apply on both sides of this equation and return the result.

4.22)

Let *〈 〉 +. Following is a proof that is decidable:

Let be a decider for . We go through each state in , marking it the only accepting state. For each such iteration

we apply on that machine, and it will be discovered as empty iff the state that is marked as accepting cannot be reached

by any computation.

The Busy Beaver Problem

How many 1’s can an -state TM write on an initially empty tape (and then stop) [Tibor Rado, 1962]

This problem is originally defined for Turing machines with an infinite tape to both sides, * +, tape initialized with

only 0’s, and is the number of operational states (excluding halting states). Denote () the result of ().

 : () since we have to halt after 1 state (thus the maximum #1’s we can write is 1).

 :

 A B

0 1RB 1LA

1 1LB 1RH

 ()

 : …

Definitions:

 () maximum #1’s with states

 () maximum #shift operations with steps, denoted “Step count”

 1 2 3 4 5 6

 () 1 4 6

 () 1 6 21 107 ?

2
CS525 \ lec06 2012-02-15 Ariel Stolerman

Theorem

The function () is not computable.

Proof:

By contradiction, assume we have:

 that computes , so given 1’s on the input tape, it writes () on the input tape.

 a TM that given 1’s, writes 1’s.

 a TM that given 1’s writes 1’s.

Consider the concatenation of the TMs , and assume it has states. Let
 be an -

state TM that writes 1’s (with the transitions () (), (
) ()).

Consider
, then this should have states. This machine writes ()

1’s, a contradiction, since any machine with states should be able to write only () 1’s. Therefore does not

exist, so is not computable

Note: we can standardize the TMs above to go back to the beginning of the input tape at the end of their computation, such

that this way we can simply “glue” them together with no overhead states for the gluing (all overhead is covered with the

“go back to square 1” part).

Theorem

The function () is not computable.

Proof:

Similarly to the proof above, only use:
 where wipes all 1’s from the input

tape. As before it has states and performs () shift operations, since the CLEAN forces to perform ()

shifts only for the cleaning part – so we end up with more than that.

Rado’s Theorem:

Let be a computable function, then () () ().

Proof: think about it…

3
CS525 \ lec06 2012-02-15 Ariel Stolerman

Mapping Reducibility

Mapping-reducible: a language is mapping-reducible to language if there exists a function such that

 () and is computable (there exists a TM that computes it). Notation: .

Conversely, if is undecidable, is undecidable.

In addition: ̅ ̅ (using the same reduction function).

Example:

 :

For a given input 〈 〉 we map it to a TM that halts iff () accepts. Define as follows: We simulate on . If it

rejects, loop forever. If it accepts, accept.

If accepts , will accept, therefore halt. If rejects or loops forever, will loop forever. Therefore

〈 〉 . In the cases the input is not a proper pair of TM and a string, we map it to a TM that is

not a proper encoding of a TM as well.

Review:

 We showed that is undecidable (using diagonalization): assume some TM decides , so we build a machine

 that given a code of a machine accepts if accepts and reject if rejects (using to check if halts on

itself as input). Then we get a contradiction for the computation (), as it should do the opposite of what it does.

̅̅ ̅̅ ̅̅ is not recognizable.

 is undecidable by a reduction from :

Example 5.26:

 :

For a given TM we build the pair where and is a TM that rejects always. This way, if () then

 () () , and the other way around.

Example 5.27:

The use of mapping reducibility to prove is undecidable:

Given 〈 〉 construct that does the following:

On input , if then reject. Otherwise simulate on . If accepts, accept. Otherwise, reject.

Therefore () does not accept .

Note: this is a reduction
̅̅ ̅̅ ̅.

Moreover it can be proven that there is no reduction : if there was such a reduction, then there would be a

reduction
̅̅ ̅̅ ̅̅

̅̅ ̅̅ ̅, but
̅̅ ̅̅ ̅̅ is not recognizable, therefore it would mean

̅̅ ̅̅ ̅ is also not Turing-recognizable, but we

know it is – a contradiction.

4
CS525 \ lec06 2012-02-15 Ariel Stolerman

The recognizing TM for
̅̅ ̅̅ ̅ simply enumerates over all possible inputs and simulates the given input TM (in “BFS”: each

step run steps of the first possible inputs).

Theorem 5.30

 is neither Turing-recognizable nor co-Turing-recognizable.

Proof:

 is not Turing-recognizable:

It suffices to show that
̅̅ ̅̅ ̅̅ ̅̅ , since then

̅̅ ̅̅ ̅̅
̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ , and

̅̅ ̅̅ ̅̅ is not Turing-recognizable. Given

〈 〉 we will create 〈 〉 such that accepts () (): Let s.t. () and simulates on .

̅̅ ̅̅ ̅̅ ̅ is not Turing-recognizable:

It suffices to show that since then
̅̅ ̅̅ ̅̅

̅̅ ̅̅ ̅̅ ̅̅ , and
̅̅ ̅̅ ̅̅ is not Turing-recognizable. Given 〈 〉 we will

create 〈 〉 such that accepts () (): Let s.t. () * + and rejects all , and if ,

simulates on and accepts iff it is accepted.

Recursion Theorem

The Turing machine prints its own code.

Lemma 6.1: There exists a computable function such that () is the code of a TM that prints .

From that we construct from two parts :

 prints

 : on input :

o Print ()

o Combine with

o Print the description

