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Administration 

 Week 3 midterm: at the end of next week the first midterm will be published. We will have ~2-3 hours (including for 

technical stuff) once we check it out. 

 The final exam will also be online. 

Chapter 1 - Recap. 

The pumping lemma 

Let   be a regular language                | |      can be written as       (        ) where: 

1) | |    

2) |  |    

3)            

The strings     can both be   together. 

Consequence: 

The language   *    |    + is not regular. The way to prove it is by finding a string that contradicts the pumping 

lemma. For instance, choose       , where   is the pumping length. For that  ,       would mean   * +  

necessarily, and then according to the pumping lemma       . But      has more 0’s than 1’s, thus        in 

contradiction to the pumping lemma. Therefore the pumping lemma cannot apply, then   is not regular. 

So we use the pumping lemma to prove that non-regular languages are indeed not regular using proof by contradiction. 

 

Question: is my laptop a DFA? 

Answer: yes! The set of states would be the entire domain of memory-configurations (many, many configurations), but it is 

a finite set. Any stroke of key / button does a transition. 

 

Context-Free Languages 

Example: 

      

    | ( ) 

    |   

Where   is the start symbol and the rows are production rules. The uppercase letters are variables and the lowercase are 

terminals. Example of a derivation: 

      ( )    (   )      (   )      (   )    

Where the string derived is constructed of all terminals. We say that this grammar derives this string. 

Another example: 

                     |        

                       |          

         (      )|   
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With this language we can generate the following expression: 

      

In the following way (parse tree): 

 

CFG: Formal definition 

A context-free grammar is the 4-tuple (       ), where: 

   is a finite set of variables 

   is a finite set of terminals (      

   is a finite set of derivation rules where     (   )  

     is the start state 

Let     be a rule, where       (   ) . We say that   derives  , denoted  
 
  , if there is a sequence 

                 . 

The 
 
  symbolizes the transitive closure of the derivation relation 

Definition: transitive closure (of a relation): Given a set  , a relation      , the transitive closure of   is the set  

⋂  
     
   

               

 

The language of the grammar  ( )  {     |  
 
  }, i.e. there exists a derivation from the start symbol of the grammar 

  to the words in this language. 

 

Another example: 

Let    (* + *   +    ) where   are the following rules: 

      |    |   

Example of a production:                            

Interpretation:   ”(“ and   ”)” – the opening and closing parenthesis. 

 𝑒𝑥𝑝𝑟   

 𝑒𝑥𝑝𝑟    𝑡𝑒𝑟𝑚     

 𝑡𝑒𝑟𝑚   

 𝑓𝑎𝑐𝑡𝑜𝑟   

𝑎 

   𝑡𝑒𝑟𝑚   

 𝑓𝑎𝑐𝑡𝑜𝑟   

𝑎 

 𝑓𝑎𝑐𝑡𝑜𝑟   

𝑎 
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Instances like ())(, which is actually       (  ). How do we check that? Using a pushdown automaton that accepts 

 (  ). Parsing over the input, each   is pushed to the stack, and each   will pop the stack. This way we keep track of the 

parenthesis. 

Another interpretation: 

We can simulate a grid, where   will denote going “up” and   – going “down”. An input that will be accepted is one that 

starts at the lowest level of the grid and also finishes there – and we do not go below the “0” line of the grid. 

If an input is a line that is always positive, that starts and ends at 0? 

In that case, since the function drawn by this line is positive, the first step is “up” and last step is “down”, thus we have  

reduced the question to the line after the first “up” and before the last “down”, and look at that smaller line with respect to 

1 instead of 0 – but: Somewhere in the middle it may go below 1 to 0 and back to 1, but will still be legal. Therefore this 

“reduction” is incorrect. 

The way to reduce the problem is as follows: 

 Break down the line by segments between points on the 0 line 

 Then each of these segments are safe to be reduced as suggested 

above – take the enclosed line without the first and last steps, with 

respect to 1. 

 Repeat recursively. 

  

Another interpretation: 

The grammar describes the set of all binary trees, where: 

   is the empty tree 

     left and right sub-tree 

                   

 …? 

The point is that we can ask a combinatorial question: how many correctly parenthesized strings of size   are there? 

Answer:    
 

   
(  
 
)  - the  ’th Catalan number. 

And we can use the grammar to get to that number. There are programmatic tools that given a grammar can tell how many 

words of a given length   does the grammar derives. 

 

Closure under union: 

Given 2 grammars      , how do we create the grammar of the union of the languages: Create a new start symbol that 

derives each of the start symbols of      . 
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Ambiguity 

Example: 

      |     | ( ) |   |   
Then the string       can be generated in more than one way: 

                             
                             
In that case we say that the grammar is ambiguous. 
 

 
Chomsky Normal Form (CNF) 

Any context free grammar can be converted into CNF, where: 

 All rules are of the form      |                       

 And an additional rule for the start symbol:    , and it is the only rule that derives   

Converting to CNF: 

1) Removing   derivations: 

If           we can convert it to CNF by eliminating     and change   to:       |   

If             we convert   to:         |      |      |     – we simply cover all cases where originally   

might have derived  . 

2) Unit rules: 

Any rule     we eliminate by substituting   with anything that   might produce. For instance, if    , we add    . 

We do this until all unit rules are removed. 

If          the new convert to: the next part was not clear… 

 

Pushdown Automata (PDA) 

Theorem: the languages of context free grammar are the languages of (non-deterministic) PDAs 

 

PDAs that don’t use the stack are like DFAs. Using the stack gives them a greater computation power. 

Example: 

Let   *       |           +. A PDA for that cannot push down a’s, pop an a for every b, since if a’s match the c’s, after 

popping the a’s we will not be able to check #a’s against #c’s. 
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This is where the non-determinism of PDAs gets into action. Note that deterministic PDAs are strictly less powerful than 

non-deterministic PDAs. 

Formal definition: 

A PDA is a 6-tuple (            ) where: 

   is a finite set of states 

   is the input finite alphabet 

   is the stack finite alphabet 

            (    ) where the range of   is the power set of      since it is non-deterministic 

      is the start state 

     is a set of accepting states 

A PDA for     : 

 

Where the rules       mean that we read   from the input, pop   from the stack and push   to it. 

Note that the rule that goes from    to    can be replaced with      . 

 

Pumping lemma for CFLs 

This is used, like for regular languages, to show that some languages are not context-free. 

The lemma: 

If       then               | |   , then   can be written         

where 

1) |  |    

2) |   |    

3)           for     

This means that for long-enough words, there will be a repetition of some rule   

under itself, such that we can pump it to as many repetitions that we want. 

 

 

 

𝑞  𝑞  
𝜖 𝜖  $ 

  𝜖    

𝑞  

    𝜖 
    𝜖 

𝑞  
𝜖 $  𝜖 


