
1
CS525 \ lec02 2012-01-18 Ariel Stolerman

Administration

 Week 3 midterm: at the end of next week the first midterm will be published. We will have ~2-3 hours (including for

technical stuff) once we check it out.

 The final exam will also be online.

Chapter 1 - Recap.

The pumping lemma

Let be a regular language | | can be written as () where:

1) | |

2) | |

3)

The strings can both be together.

Consequence:

The language * | + is not regular. The way to prove it is by finding a string that contradicts the pumping

lemma. For instance, choose , where is the pumping length. For that , would mean * +

necessarily, and then according to the pumping lemma . But has more 0’s than 1’s, thus in

contradiction to the pumping lemma. Therefore the pumping lemma cannot apply, then is not regular.

So we use the pumping lemma to prove that non-regular languages are indeed not regular using proof by contradiction.

Question: is my laptop a DFA?

Answer: yes! The set of states would be the entire domain of memory-configurations (many, many configurations), but it is

a finite set. Any stroke of key / button does a transition.

Context-Free Languages

Example:

 | ()

 |

Where is the start symbol and the rows are production rules. The uppercase letters are variables and the lowercase are

terminals. Example of a derivation:

 () () () ()

Where the string derived is constructed of all terminals. We say that this grammar derives this string.

Another example:

 |

 |

 ()|

2
CS525 \ lec02 2012-01-18 Ariel Stolerman

With this language we can generate the following expression:

In the following way (parse tree):

CFG: Formal definition

A context-free grammar is the 4-tuple (), where:

 is a finite set of variables

 is a finite set of terminals (

 is a finite set of derivation rules where ()

 is the start state

Let be a rule, where () . We say that derives , denoted

 , if there is a sequence

 .

The

 symbolizes the transitive closure of the derivation relation

Definition: transitive closure (of a relation): Given a set , a relation , the transitive closure of is the set

⋂

The language of the grammar () { |

 }, i.e. there exists a derivation from the start symbol of the grammar

 to the words in this language.

Another example:

Let (* + * +) where are the following rules:

 | |

Example of a production:

Interpretation: ”(“ and ”)” – the opening and closing parenthesis.

 𝑒𝑥𝑝𝑟

 𝑒𝑥𝑝𝑟 𝑡𝑒𝑟𝑚

 𝑡𝑒𝑟𝑚

 𝑓𝑎𝑐𝑡𝑜𝑟

𝑎

 𝑡𝑒𝑟𝑚

 𝑓𝑎𝑐𝑡𝑜𝑟

𝑎

 𝑓𝑎𝑐𝑡𝑜𝑟

𝑎

3
CS525 \ lec02 2012-01-18 Ariel Stolerman

Instances like ())(, which is actually (). How do we check that? Using a pushdown automaton that accepts

 (). Parsing over the input, each is pushed to the stack, and each will pop the stack. This way we keep track of the

parenthesis.

Another interpretation:

We can simulate a grid, where will denote going “up” and – going “down”. An input that will be accepted is one that

starts at the lowest level of the grid and also finishes there – and we do not go below the “0” line of the grid.

If an input is a line that is always positive, that starts and ends at 0?

In that case, since the function drawn by this line is positive, the first step is “up” and last step is “down”, thus we have

reduced the question to the line after the first “up” and before the last “down”, and look at that smaller line with respect to

1 instead of 0 – but: Somewhere in the middle it may go below 1 to 0 and back to 1, but will still be legal. Therefore this

“reduction” is incorrect.

The way to reduce the problem is as follows:

 Break down the line by segments between points on the 0 line

 Then each of these segments are safe to be reduced as suggested

above – take the enclosed line without the first and last steps, with

respect to 1.

 Repeat recursively.

Another interpretation:

The grammar describes the set of all binary trees, where:

 is the empty tree

 left and right sub-tree

 …?

The point is that we can ask a combinatorial question: how many correctly parenthesized strings of size are there?

Answer:

(

) - the ’th Catalan number.

And we can use the grammar to get to that number. There are programmatic tools that given a grammar can tell how many

words of a given length does the grammar derives.

Closure under union:

Given 2 grammars , how do we create the grammar of the union of the languages: Create a new start symbol that

derives each of the start symbols of .

4
CS525 \ lec02 2012-01-18 Ariel Stolerman

Ambiguity

Example:

 | | () | |
Then the string can be generated in more than one way:

In that case we say that the grammar is ambiguous.

Chomsky Normal Form (CNF)

Any context free grammar can be converted into CNF, where:

 All rules are of the form |

 And an additional rule for the start symbol: , and it is the only rule that derives

Converting to CNF:

1) Removing derivations:

If we can convert it to CNF by eliminating and change to: |

If we convert to: | | | – we simply cover all cases where originally

might have derived .

2) Unit rules:

Any rule we eliminate by substituting with anything that might produce. For instance, if , we add .

We do this until all unit rules are removed.

If the new convert to: the next part was not clear…

Pushdown Automata (PDA)

Theorem: the languages of context free grammar are the languages of (non-deterministic) PDAs

PDAs that don’t use the stack are like DFAs. Using the stack gives them a greater computation power.

Example:

Let * | +. A PDA for that cannot push down a’s, pop an a for every b, since if a’s match the c’s, after

popping the a’s we will not be able to check #a’s against #c’s.

5
CS525 \ lec02 2012-01-18 Ariel Stolerman

This is where the non-determinism of PDAs gets into action. Note that deterministic PDAs are strictly less powerful than

non-deterministic PDAs.

Formal definition:

A PDA is a 6-tuple () where:

 is a finite set of states

 is the input finite alphabet

 is the stack finite alphabet

 () where the range of is the power set of since it is non-deterministic

 is the start state

 is a set of accepting states

A PDA for :

Where the rules mean that we read from the input, pop from the stack and push to it.

Note that the rule that goes from to can be replaced with .

Pumping lemma for CFLs

This is used, like for regular languages, to show that some languages are not context-free.

The lemma:

If then | | , then can be written

where

1) | |

2) | |

3) for

This means that for long-enough words, there will be a repetition of some rule

under itself, such that we can pump it to as many repetitions that we want.

𝑞 𝑞
𝜖 𝜖 $

 𝜖

𝑞

 𝜖
 𝜖

𝑞
𝜖 $ 𝜖

