
Ariel Stolerman \ CS525 Chapter #7 Preparation
 1

CS525 Winter 2012 \ Chapter #7 Preparation

Ariel Stolerman

1)

a. () :

The main loop of the algorithm will run at most steps – in the case the carry () is 1 in all iterations, and eventually creates

a new digit . In this case, the initialization takes some constant time , the main loop takes at most time for

some constant , and the last step (at line 10) takes some constant time . Therefore the total maximum running time for

an input in SLM-representation with digits is ()

 where is a constant.

Therefore () for the above, therefore () .

For the other direction, in worst case the loop runs iterations. Using the same notation as above:

 ()

Therefore () for , and so ().

In conclusion, () , as required.

b. () :

In the best case scenario (the minimum running time), the addition does not cause a carry that needs to be transferred

forward. In this case the initialization will take some constant time , the loop will run 1 iteration only, that will take in

total some constant time (lines 3 through 9 – including the condition check), and the last line will take some constant

time . Let , then () () . The opposite direction works by choosing

 as the

constant. Therefore () , as required.

c. () :

To calculate the number of steps it would take in average, we partition the space of -length inputs of -base represented

numbers (approx. between 0 and).

For each , the chance the carry will yield iterations of the main loop is:

The chance the first digits are and the th digit is = (

)

Using the notations of the previous sections (and), the averaged running time for inputs of size is:

 ∑ ⏟

 (

)

 ⏟

()

∑

 ()

Apply convergence test on ∑

 :

 ∑

 converges,

and therefore the sum ∑

 for all for some constant . Therefore:

Ariel Stolerman \ CS525 Chapter #7 Preparation
 2

()
()

 , which is a constant (for any). Denote that constant , then () ,

therefore () . The opposite is trivial: (), where suffices.

In conclusion, () , as required.

7.6)

Following are proofs of closure properties of :

Let be two poly-time decidable languages, then there exist two polynomials such that is decidable by an

 (()) time Turing machine denoted , and is decidable by an (()) Turing machine denoted , for any input

of size .

Union:

Let be the union of both languages above, then we can define a Turing machine as follows:

“For input :

 Simulate on . If it accepts, accept.

 Otherwise, simulate on . If it accepts, accept.

 Otherwise, reject.”

Clearly is a decider for , and the time it takes is at most the time it would take , followed by the time it would take

 , plus some polynomial-time operations (e.g. for resetting the input tape). Therefore the total running time for any input

of size is (() () ()), where is the polynomial for the additional operations. Since addition of

polynomials is a polynomial itself, then is decidable by a polynomial-time Turing machine, an so . Therefore is

closed under union.

Concatenation:

Let * + be the concatenation of both languages above, then we can define a Turing

machine as follows:

“For input :

 For any partition of into two consecutive parts (where):

o Simulate on and on .

o If both accept, accept. Otherwise, continue.

 If did not accept for any of the partitions, reject.”

Clearly is a decider for , as it checks all possible partitions of into two concatenated strings such that the first is in

and the second in . Each iteration takes (() ()) where , therefore each step takes (()

 ()); Also, there are () partitions to check, therefore the total is ((() ())), which is a polynomial itself.

Therefore is decidable by a polynomial-time Turing machine and so . Therefore is closed under concatenation.

Complement:

Let
̅̅ ̅ the complement of , then we can define a Turing machine as follows:

Ariel Stolerman \ CS525 Chapter #7 Preparation
 3

“For input :

 Simulate on .

 If it accepts, reject. Otherwise, accept.”

Clearly decides , and it takes (()) time (we can use itself, only substituting transitions to the accepting state by

transitions to the rejecting state and vice-versa), therefore as well. Therefore is closed under complement.

7.8)

Let *〈 〉 +. Following is an analysis of the algorithm in page 157

showing that .

1. Finding the start node of and marking it can take () time.

2. The loop in the second stage can have () repetitions, because as long as there are unmarked nodes, each iteration

marks at least one unmarked node.

3. For each iteration of the loop above, all () nodes need to be checked for adjacency with the checked node, and each

check takes () – going over all edges. The total running time of each iteration is therefore ().

4. The last step that scans all nodes and checks if they are all marked takes ().

The total running time is therefore () (), therefore .

7.9)

Let *〈 〉 +. Following is a proof that :

Let be a TM defined as follows:

“For input :

 Make sure is a proper encoding of an undirected graph, otherwise reject.

 Enumerate over all possible triplets of nodes in , and check if all are connected to each other.

 If found such triplet, accept. Otherwise, reject.”

Note: we can assume a multi-tape TM for simplicity of running-time analysis (i.e. not take into consideration going back and

forth over a single tape), as it maintains “polynomiality”.

Correctness:

Clearly if contains a triangle, it will be found and the machine will accept, and if not – the machine will reject.

Running time:

 The first step can take () time, including copying the nodes an edges to different tapes, and scanning for

correctness of both lists (no duplicate nodes, edges encoded over nodes correctly etc.).

 There are (

) () possible triplets. Each triplets needs to be checked for 3 adjacencies (of each possible pair),

each takes () time for traversing over all edges. The total running time of this step is therefore ().

The total running time is () (), therefore .

Ariel Stolerman \ CS525 Chapter #7 Preparation
 4

7.10)

Following is a proof that *〈 〉 () + is in :

Let be the Turing machine that decides as described in the proof of theorem 4.4 (page 168). Let be the

following TM:

“For input :

 Check that is a proper encoding of a DFA, otherwise reject.

 Let be with the accepting states marked as not-accepting and vice-versa.

 Simulate on . If it accepts, accept. Otherwise, reject.”

Correctness:

Clearly () () , as switching accepting states with rejecting and vice-versa results with the complement

language.

Running-time:

Note: we can assume a multi-tape TM for simplicity of running-time analysis (i.e. not take into consideration going back and

forth over a single tape), as it maintains “polynomiality”.

 Checking the input is a proper encoding of a DFA is () (or (), depending on the way we check; either way –

polynomial time).

 Reversing the type of state in to generate can also be (), if the states have a bit that describes whether they

are accepting or rejecting (and then it can simply be reversed).

 Simulating on , using the TM described in theorem 4.4 is similar to exercise 7.8: marking the start state and then

looping and marking all reachable states from marked states until no further changes are possible, followed by

checking whether no accepting state is marked (reachable). Similarly to 7.8, this takes polynomial time in the length of

the input (it can be shown to take ()).

The total running time is therefore () (), and so .

7.12

7.13)

Let *〈 〉 * + +.

Following is a proof that :

Let be a TM defined as follows:

“On input 〈 〉:

 Let . For ⌈ ⌉:

o Calculate , where is denoted composition

 Construct be the composition of all for all such that the th bit of is 1.

 Compare and . If all transitions are equal, accept. Otherwise, reject.”

Ariel Stolerman \ CS525 Chapter #7 Preparation
 5

Correctness:

We can calculate reach from the previous by composing the latter with itself, as it simulates doubling the number of

steps. Eventually, since is a binary number, we can simulate composing for times by composing all elements in the sum

of powers of 2 that form – namely all where the th bit of is 1. Therefore the construction of is correct. The

rest is trivial.

Running time:

The loop that calculates all runs (), and since is a binary integer it is equal to (). Each iteration can take (),

as for each element of the () elements in the permutation we need to scan () transitions in itself in order to

“double” the permutation. The total running time for constructing all is therefore (). Constructing takes similar

time: calculating at most () compositions, each (). The last step of comparing the permutations can be done in

linear time (using multi-tape TM; () otherwise). The total running time is therefore () (), an so

 , as required.

7.14)

Following is a proof that is closed under the star operation:

We describe a dynamic-programming algorithm. Let be a polynomially-decidable language, and let be a TM

decider for . Following is a description of a TM which is a decider for :

“On input :

 Let be the length of the input .

 Initialize a table of size , denoted which will hold at each cell where :

 {

 For :

o Simulate on . If it accepts, mark .

o Otherwise, mark .

 For all the rest of the cells where :

o Simulate on . If it accepts, mark .

o Otherwise, for :

 If and () , mark and break the loop.

o Otherwise, mark

 If , accept. Otherwise, reject.”

Correctness:

The construction of the table is based on the fact that if then as well. Each substring of is checked

for that or for membership in (using the decider of) – the only two possibilities in which . Therefore eventually

 will be 1 iff .

Ariel Stolerman \ CS525 Chapter #7 Preparation
 6

Running time: The construction is clearly polynomial, therefore is closed under the star operation.

