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1) 

a.   ( )  : 

The main loop of the algorithm will run at most   steps – in the case the carry ( ) is 1 in all iterations, and eventually creates 

a new digit     . In this case, the initialization takes some constant time   , the main loop takes at most      time for 

some constant   , and the last step (at line 10) takes some constant time   . Therefore the total maximum running time for 

an input   in SLM-representation with   digits is            (        )  
          

    where   is a constant. 

Therefore        ( )      for the   above, therefore   ( )   . 

For the other direction, in worst case the loop runs   iterations. Using the same notation as above: 

  ( )                    

Therefore                ( ) for    , and so     ( ). 

In conclusion,   ( )  , as required. 

 

b.   ( )  : 

In the best case scenario (the minimum running time), the addition does not cause a carry that needs to be transferred 

forward. In this case the initialization will take some constant time   , the loop will run 1 iteration only, that will take in 

total some constant time    (lines 3 through 9 – including the condition check), and the last line will take some constant 

time   . Let           , then        ( )        ( )   . The opposite direction works by choosing 
 

 
 as the 

constant. Therefore   ( )  , as required. 

 

c.   ( )  : 

To calculate the number of steps it would take in average, we partition the space of  -length inputs of  -base represented 

numbers (approx. between 0 and     ). 

For each      , the chance the carry will yield   iterations of the main loop is: 

The chance the first     digits are     and the  th digit is      = (
 

 
)
 

 
   

 
 

Using the notations of the previous sections (      and   ), the averaged running time for inputs of size   is: 
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Apply convergence test on ∑
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    converges, 

and therefore the sum ∑
 

  
 
       for all     for some constant   . Therefore: 
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( )       
(   )

 
      , which is a constant (for any    ). Denote that constant  , then        ( )     , 

therefore   ( )   . The opposite is trivial:            ( ), where     suffices. 

In conclusion,   ( )  , as required. 

 

7.6) 

Following are proofs of closure properties of  : 

Let         be two poly-time decidable languages, then there exist two polynomials       such that    is decidable by an 

 (  ( )) time Turing machine denoted   , and    is decidable by an  (  ( )) Turing machine denoted   , for any input 

of size  . 

Union: 

Let         be the union of both languages above, then we can define a Turing machine   as follows: 

“For input  : 

 Simulate    on  . If it accepts, accept. 

 Otherwise, simulate    on  . If it accepts, accept. 

 Otherwise, reject.” 

Clearly   is a decider for  , and the time it takes is at most the time it would take   , followed by the time it would take 

  , plus some polynomial-time operations (e.g. for resetting the input tape). Therefore the total running time for any input 

of size   is  (  ( )    ( )    ( )), where    is the polynomial for the additional operations. Since addition of 

polynomials is a polynomial itself, then   is decidable by a polynomial-time Turing machine, an so    . Therefore   is 

closed under union. 

Concatenation: 

Let         *              + be the concatenation of both languages above, then we can define a Turing 

machine   as follows: 

“For input  : 

 For any partition of   into two consecutive parts       (where                ): 

o Simulate    on    and    on   . 

o If both accept, accept. Otherwise, continue. 

 If did not accept for any of the partitions, reject.” 

Clearly   is a decider for  , as it checks all possible partitions of   into two concatenated strings such that the first is in    

and the second in   . Each iteration takes  (  (  )    (  )) where        , therefore each step takes  (  ( )  

  ( )); Also, there are  ( ) partitions to check, therefore the total is  (  (  ( )    ( ))), which is a polynomial itself. 

Therefore   is decidable by a polynomial-time Turing machine and so    . Therefore   is closed under concatenation. 

Complement: 

Let     
̅̅ ̅ the complement of   , then we can define a Turing machine   as follows: 
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“For input  : 

 Simulate    on  . 

 If it accepts, reject. Otherwise, accept.” 

Clearly   decides  , and it takes  (  ( )) time (we can use    itself, only substituting transitions to the accepting state by 

transitions to the rejecting state and vice-versa), therefore     as well. Therefore   is closed under complement. 

 

7.8) 

Let           *〈 〉                                    +. Following is an analysis of the algorithm in page 157 

showing that            . 

1. Finding the start node of   and marking it can take  ( ) time. 

2. The loop in the second stage can have  ( ) repetitions, because as long as there are unmarked nodes, each iteration 

marks at least one unmarked node. 

3. For each iteration of the loop above, all  ( ) nodes need to be checked for adjacency with the checked node, and each 

check takes  (  ) – going over all edges. The total running time of each iteration is therefore  (  ). 

4. The last step that scans all nodes and checks if they are all marked takes  ( ). 

The total running time is therefore  (        )   (  ), therefore            . 

 

7.9) 

Let          *〈 〉                                                    +. Following is a proof that           : 

Let   be a TM defined as follows: 

“For input  : 

 Make sure   is a proper encoding of an undirected graph, otherwise reject. 

 Enumerate over all possible triplets of nodes in  , and check if all are connected to each other. 

 If found such triplet, accept. Otherwise, reject.” 

Note: we can assume a multi-tape TM for simplicity of running-time analysis (i.e. not take into consideration going back and 

forth over a single tape), as it maintains “polynomiality”. 

Correctness: 

Clearly if   contains a triangle, it will be found and the machine will accept, and if not – the machine will reject. 

Running time: 

 The first step can take  (  ) time, including copying the nodes an edges to different tapes, and scanning for 

correctness of both lists (no duplicate nodes, edges encoded over nodes correctly etc.). 

 There are ( 
 
)   (  ) possible triplets. Each triplets needs to be checked for 3 adjacencies (of each possible pair), 

each takes  (  ) time for traversing over all edges. The total running time of this step is therefore  (  ). 

The total running time is  (     )   (  ), therefore           . 
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7.10) 

Following is a proof that        *〈 〉                   ( )    + is in  : 

Let    be the Turing machine that decides      as described in the proof of theorem 4.4 (page 168). Let   be the 

following TM: 

“For input  : 

 Check that   is a proper encoding of a DFA, otherwise reject. 

 Let    be   with the accepting states marked as not-accepting and vice-versa. 

 Simulate    on   . If it accepts, accept. Otherwise, reject.” 

Correctness: 

Clearly  ( )      (  )   , as switching accepting states with rejecting and vice-versa results with the complement 

language. 

Running-time: 

Note: we can assume a multi-tape TM for simplicity of running-time analysis (i.e. not take into consideration going back and 

forth over a single tape), as it maintains “polynomiality”. 

 Checking the input is a proper encoding of a DFA is  ( ) (or  (  ), depending on the way we check; either way – 

polynomial time). 

 Reversing the type of state in   to generate    can also be  ( ), if the states have a bit that describes whether they 

are accepting or rejecting (and then it can simply be reversed). 

 Simulating    on   , using the TM described in theorem 4.4 is similar to exercise 7.8: marking the start state and then 

looping and marking all reachable states from marked states until no further changes are possible, followed by 

checking whether no accepting state is marked (reachable). Similarly to 7.8, this takes polynomial time in the length of 

the input (it can be shown to take  (  )). 

The total running time is therefore  (       )   (  ), and so         . 

 

7.12 

 

7.13) 

Let    *〈     〉                                      *     +                          +. 

Following is a proof that     : 

Let   be a TM defined as follows: 

“On input 〈     〉: 

 Let     . For       ⌈   ⌉: 

o Calculate             , where   is denoted composition 

 Construct    be the composition of all    for all   such that the  th bit of   is 1. 

 Compare   and   . If all transitions are equal, accept. Otherwise, reject.” 



Ariel Stolerman \ CS525 Chapter #7 Preparation  
 5 

  

Correctness: 

We can calculate reach    from the previous      by composing the latter with itself, as it simulates doubling the number of 

steps. Eventually, since   is a binary number, we can simulate composing   for   times by composing all elements in the sum 

of powers of 2 that form   – namely all    where the  th bit of   is 1. Therefore the construction of       is correct. The 

rest is trivial. 

Running time: 

The loop that calculates all    runs  (   ), and since   is a binary integer it is equal to  ( ). Each iteration can take  (  ), 

as for each element of the  ( ) elements in the permutation      we need to scan  ( ) transitions in itself in order to 

“double” the permutation. The total running time for constructing all    is therefore  (  ). Constructing    takes similar 

time: calculating at most  ( ) compositions, each  (  ). The last step of comparing the permutations can be done in 

linear time (using multi-tape TM;  (  ) otherwise). The total running time is therefore  (      )   (  ), an so 

    , as required. 

 

7.14) 

Following is a proof that   is closed under the star operation: 

We describe a dynamic-programming algorithm. Let     be a polynomially-decidable language, and let   be a TM 

decider for  . Following is a description of a TM    which is a decider for   : 

“On input  : 

 Let   be the length of the input          . 

 Initialize a table of size    , denoted   which will hold at each cell where    : 

    {
              

           
 

 For        : 

o Simulate   on    . If it accepts, mark      . 

o Otherwise, mark      . 

 For all the rest of the cells where    : 

o Simulate   on      . If it accepts, mark      . 

o Otherwise, for              : 

 If       and  (   )   , mark       and break the loop. 

o Otherwise, mark       

 If      , accept. Otherwise, reject.” 

Correctness: 

The construction of the table is based on the fact that if        then         as well. Each substring of   is checked 

for that or for membership in   (using the decider of  ) – the only two possibilities in which     . Therefore eventually 

    will be 1 iff           . 
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Running time: The construction is clearly polynomial, therefore   is closed under the star operation. 


