Ariel Stolerman \ CS525 Chapter #4 Preparation

CS525 Winter 2012 \ Chapter #4 Preparation

Ariel Stolerman

Problems

4.10)

Let INFpp, = {{M) | M is a PDA and L(M) is an infinite language}. Following is a proof that IN Fpp 4 is decidable:

A context-free language is infinite if there exists a cycle within its derivation rules. For PDAs, we can construct a CFG

corresponding to any given PDA and test it. Therefore we can construct a Turing machine N that given the input M does as

follows:

e Check if the input M is a valid encoding of a PDA. If not, reject.

e Create G a CFG that is equivalentto M, i.e. L(M) = L(G), and convert G to Chomsky normal form.

e Look for a cycle in the grammar’s rules in BFS (in order to avoid infinite loops) such that at any iteration on the cycle
the generated string is pumped (i.e. the cycles describes a derivation of the form R 5 aRb where |ab| > 0 and a, b are
terminals).

e If found such cycle, accept. Otherwise, reject.

4.12)

Let A = {(R,S)| R and S are regular expressions,L(R) S L(S)}. Following is a proof that A is decidable. We will show a
Turing machine M that decides A:

e Checkthat R, S are proper regular expressions, otherwise reject.

e Construct a NFA A’ from the regular expression R (such that L(A) = L(R)), and then a DFA A from A'.

e Construct a NFA B’ from the regular expression S (such that L(B) = L(S)), and then a DFA B from B'.

e Construct a DFA C that recognizes L(A)NL(B).

e Simulate the TM from the book that decides Epr4 on C. If it accepts, accept. Otherwise, reject.

Note that if L(R) is not fully contained within L(S) then 3w € L(R)Aw & L(S) = w € L(R)NL(S). Furthermore, the
construction of the NFAs and DFAs can be done using a Turing machine, and the intersection of regular languages is a
regular language, so we can construct a DFA for it. Thus if the intersection above is discovered to be empty, L(4) must be

fully contained in L(B), and so L(R) is fully contained in L(S).

4.15)

Let A = {(R)| R is a regular expression,3w € L(R) s.t.w = x111y for some x,y € £*}. Following is a proof that 4 is
decidable. We will construct a Turing machine M that decides A as follows:

e Check that R is a proper regular expression, otherwise reject.

e Construct a DFA A from the regular expression R (such that L(4A) = L(R)).

Ariel Stolerman \ CS525 Chapter #4 Preparation

e Construct a DFA B that recognizes the language of the regular expression £* o {111} o Z*.

e Construct a DFA C that recognizes the language L(A)NL(B).

e Simulate the TM from the book that decides Epr,4 on C. If it accepts, reject. Otherwise, accept.

Clearly if L(R) contains some string that contains 111, its intersection with the language of all strings that contain 111
should be non-empty. Thus simulating the Turing machine that decides whether that intersection is empty and returning

the opposite answer is correct.

4.16)
Following is a proof that EQpr4 is decidable by testing all DFAs on two strings up to a certain size, and that size as a
function of the definitions of the two input DFAs. Let EQprsa = {{A,B) | A, B are DFAs and L(A) = L(B)}. Let M be a
Turing machine that decides EQpr4 and defined as follows:
e Verify the input (4, B) describes 2 valid DFAs A and B with the same alphabet Z. If not, reject.
e Calculate n = |Q4| and m = |Qg| the number of states in each of the DFAs.
e Enumerate all strings in Z up to length n - m, and for each such string w:

o Simulate Aonw

o Simulate Bonw

o If the result of the two simulations is different, reject. Otherwise continue.
e If got here (after all n - m strings), accept.
The reason we can check only the first n - m strings is that if the 2 DFAs do not accept the same language, there must be a
string w of size |w| < n-m for which A(w) # B(w). Assume by contradiction that the first string that yields a different
output of A and B is w' and |w'| = | > n - m, then there is a sequence of states ay, a4, ..., a; € Q4 and by, by, ..., b; € Qp
that describe the transitions for w' in A and B respectively. Since [> n - m, putting those sequences side by side, there
must be some repetition of a pair of sequences a;, b; and a;, b; such that a; = a;, b; = b;,i < j. Therefore we can remove
all subsequences in between leaving only a;, b; and by that get a smaller string w'’ that A, B will act the same over exactly
as over w'. We can “pump” down until receiving a string of length < n - m, thus contradicting the assumption — as there we
have found a string w'’ with length |w"'| < n-m such that A(w"") # B(w'"). Therefore checking all strings up to size n-m

is sufficient.

4.18)

Let A, B be two disjoint co-Turing-recognizable languages. Since A is co-Turing-recognizable, then there exists a Turing
machine M; that recognizes A. In the same manner, there exists a Turing machine M, that recognizes B. Since 4, B are
disjoint then ANB = @, therefore ANB = AUB = X*. We will construct the following TM M:

e Simulate M; and M, on the input string w alternatively. If M; accepts, reject. Otherwise (if M, accepts), accept.

Since the simulation of M, is interleaved with the simulation of M,, and L(M;)UL(M,) = X*, the simulation will always

have a finite number of steps and get to an accepting / rejecting state. Forallw € &%, if w € Athenw € B=>w ¢ A, w € B

Ariel Stolerman \ CS525 Chapter #4 Preparation

thus M; will never accept, and M, will, so M accepts, thus w € A = w € L(M). In a similar manner, if w € B, then M
rejects, thusw € B=>w ¢ L(M) = w € L(M). Therefore we have found a decidable language L(M) (since M always halts

with a decision) and A € L(M), B € L(M), as required.

4.19)

let S = {(M)|MisaDFAandw € L(M) = wk € L(M)}. We will show S is decidable by constructing a Turing machine M

as follows:

e Check that M is a proper DFA, otherwise reject.

e Construct a DFA MR that recognizes {w | wR € L(M)} (detailed later).

e Simulate the Turing machine from the book that decides EQpr, on the input (M, MR). If it accepts, accept. Otherwise,
reject.

We can build the DFA MF by first constructing an NFA from M by reversing all transitions, making the previous start state

the only new accepting state, and creating a new start state with € transitions to all previous accepting state (that now

should not accept). Then a DFA can be constructed from this NFA.

4.20)

Let PREFIX — FREEggx = {R | R is a regular expression and L(R) is prefix free}. We prove PREFIX — FREE is
decidable by constructing a Turing machine M that decides it as follows:

e Check R is a proper regular expression, otherwise reject.

e Construct a DFA A from the input regular expression R (such that L(R) = L(A)).

e Construct a DFA B that recognizes L(A) o Xt (where X is the alphabet of A).

e Construct a DFA C that recognizes L(A)NL(B).

e Simulate the TM from the book that decides Epp4 on the input (C). if it accepts, accept. Otherwise, reject.

The idea is that if R generates a prefix-free language, then any string w generated by R cannot be a prefix of any other
string generated by R. The language of all strings that have any w that is generated by R as a prefix is L(R) o Xt =
{ab € 2% | a € L(R), b € 1}, thus if the intersection of that language with L(R) is not empty, it means L(R) contains
some string(s) with a proper prefix from L(R) itself. Therefore checking whether that intersection is empty checks the
required condition of PREFIX — FREEpx.

A similar approach for showing PREFIX — FREE . is decidable will fail since context-free languages are not closed under

intersection, thus the construction of C cannot fit when applied to context-free languages.

4.22)
Let L = {{M)| M is a PDA that has a useless state}. Following is a proof that L is decidable. We will construct a Turing
machine M that decides L as follows:

e Check that M is a proper PDA, otherwise reject.

Ariel Stolerman \ CS525 Chapter #4 Preparation

e Foranystate g in M:
o Mark q as the only accepting state, and denote that PDA as M.
o Use the Turing machine that decides Epp, on M. If it accepts — accept.
e If got to this point, reject.
Clearly if marking any state g as the only accepting state, and the language recognized by that variant is empty, then there

exists a useless state in the input PDA M.

4.26)

Let C = {{G, x)| G is a CFG that generates some string w,where x is a substring of w}. Following is a proof that C is

decidable. We will construct a Turing machine M that decides C as follows:

e Construct a DFA A that recognizes that language of the regular expression X* o {x} o Z* (all strings with x as their
substring).

e Construct a CFG F for the context-free language L(G)NL(A) (which is also context-free).

e Simulate the Turing machine that decides E-p; on L(F). If it accepts, reject. Otherwise, accept.

We know that the language that is an intersection of a CFL and a regular language is also a CFL, therefore F will be a CFG.

Moreover, L(A) is the language of all strings with x as their substring, and is a regular language (described above ina a

regular expression). Therefore if G generates some string w with x as its substring, the intersection, L(F), should be non-

empty.

4.27)

Let Copg = {{G, k)| L(G) contains exactly k strings where k = 0 or k = oo}. Following is a proof that Ccg, is decidable.

We will construct a Turing machine M that decides C¢g as follows:

e Check that G is a proper CFG and that k = 0 or k = oo. If not, reject.

e Construct a PDA P from G, and run INFpp4(P) (from exercise 4.10).

e Ifk =ocoandINFpp,(P) accepted, accept.

o Ifk # oo and INFpp,(P) rejected, reject.

e Otherwise (k # o and INFpp, rejected), calculate the pumping length p of L(G) (can be calculated from the number
of variables in the Chomsky normal form of G), initialize a counter to 0 and iterate over all strings w in of size
01,..,p—1:

o Simulate P on w. If it accepts, increase the counter by 1.

e Atthe end, if the counter = k, accept. Otherwise, reject.

We have proven that INFpp 4 is decidable, and it is TM possible to construct a PDA from a given CFG. Therefore if k = oo it

is easy to check if the input is in the C.r;. Otherwise, we know that any string in the language is of length at most p

(excluding), otherwise it could be pumped forever and the L(G) would be infinite, which we already know is not true.

Ariel Stolerman \ CS525 Chapter #4 Preparation

Therefore it is sufficient to check this finite number of strings, and count whether there are exactly k strings of them that

are accepted by G (that is, its corresponding PDA P).

