
Ariel Stolerman \ CS525 Chapter #4 Preparation  
 1 

  

CS525 Winter 2012 \ Chapter #4 Preparation 

Ariel Stolerman 

 

Problems 

4.10) 

Let        *〈 〉                   ( )                        +. Following is a proof that        is decidable: 

A context-free language is infinite if there exists a cycle within its derivation rules. For PDAs, we can construct a CFG 

corresponding to any given PDA and test it. Therefore we can construct a Turing machine   that given the input   does as 

follows: 

 Check if the input   is a valid encoding of a PDA. If not, reject. 

 Create   a CFG that is equivalent to  , i.e.  ( )   ( ), and convert   to Chomsky normal form. 

 Look for a cycle in the grammar’s rules in BFS (in order to avoid infinite loops) such that at any iteration on the cycle 

the generated string is pumped (i.e. the cycles describes a derivation of the form  
 
→    where        and     are 

terminals). 

 If found such cycle, accept. Otherwise, reject. 

 

4.12) 

Let   *〈   〉                                   ( )   ( )+. Following is a proof that   is decidable. We will show a 

Turing machine   that decides  : 

 Check that     are proper regular expressions, otherwise reject. 

 Construct a NFA    from the regular expression   (such that  ( )   ( )), and then a DFA   from   . 

 Construct a NFA    from the regular expression   (such that  ( )   ( )), and then a DFA   from   . 

 Construct a DFA   that recognizes  ( )  ( )̅̅ ̅̅ ̅̅ . 

 Simulate the TM from the book that decides      on  . If it accepts, accept. Otherwise, reject. 

Note that if  ( ) is not fully contained within  ( ) then     ( )    ( )     ( )  ( )̅̅ ̅̅ ̅̅ . Furthermore, the 

construction of the NFAs and DFAs can be done using a Turing machine, and the intersection of regular languages is a 

regular language, so we can construct a DFA for it. Thus if the intersection above is discovered to be empty,  ( ) must be 

fully contained in  ( ), and so  ( ) is fully contained in  ( ). 

 

4.15) 

Let   *〈 〉                                ( )                            +. Following is a proof that   is 

decidable. We will construct a Turing machine   that decides   as follows: 

 Check that   is a proper regular expression, otherwise reject. 

 Construct a DFA   from the regular expression   (such that  ( )   ( )). 
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 Construct a DFA   that recognizes the language of the regular expression    *   +    . 

 Construct a DFA   that recognizes the language  ( )  ( ). 

 Simulate the TM from the book that decides      on  . If it accepts, reject. Otherwise, accept. 

Clearly if  ( ) contains some string that contains 111, its intersection with the language of all strings that contain 111 

should be non-empty. Thus simulating the Turing machine that decides whether that intersection is empty and returning 

the opposite answer is correct. 

 

4.16) 

Following is a proof that       is decidable by testing all DFAs on two strings up to a certain size, and that size as a 

function of the definitions of the two input DFAs. Let       *〈   〉                     ( )   ( )+. Let   be a 

Turing machine that decides       and defined as follows: 

 Verify the input 〈   〉 describes 2 valid DFAs   and   with the same alphabet  . If not, reject. 

 Calculate        and        the number of states in each of the DFAs. 

 Enumerate all strings in   up to length    , and for each such string  : 

o Simulate   on   

o Simulate   on   

o If the result of the two simulations is different, reject. Otherwise continue. 

 If got here (after all     strings), accept. 

The reason we can check only the first     strings is that if the 2 DFAs do not accept the same language, there must be a 

string   of size         for which  ( )   ( ). Assume by contradiction that the first string that yields a different 

output of   and   is    and           , then there is a sequence of states               and               

that describe the transitions for    in   and   respectively. Since      , putting those sequences side by side, there 

must be some repetition of a pair of sequences       and       such that                . Therefore we can remove 

all subsequences in between leaving only       and by that get a smaller string     that     will act the same over exactly 

as over   . We can “pump” down until receiving a string of length     , thus contradicting the assumption – as there we 

have found a string     with length           such that  (   )   (   ). Therefore checking all strings up to size      

is sufficient. 

 

4.18) 

Let     be two disjoint co-Turing-recognizable languages. Since   is co-Turing-recognizable, then there exists a Turing 

machine    that recognizes  ̅. In the same manner, there exists a Turing machine    that recognizes  ̅. Since     are 

disjoint then      , therefore    ̅̅ ̅̅ ̅̅   ̅  ̅    . We will construct the following TM  : 

 Simulate    and    on the input string   alternatively. If    accepts, reject. Otherwise (if    accepts), accept. 

Since the simulation of    is interleaved with the simulation of   , and  (  )  (  )    , the simulation will always 

have a finite number of steps and get to an accepting / rejecting state. For all     , if     then        ̅    ̅ 
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thus    will never accept, and    will, so   accepts, thus        ( ). In a similar manner, if    , then   

rejects, thus        ( )     ( )̅̅ ̅̅ ̅̅ ̅. Therefore we have found a decidable language  ( ) (since   always halts 

with a decision) and    ( )    ( )̅̅ ̅̅ ̅̅ ̅, as required. 

 

4.19) 

Let   *〈 〉                     ( )      ( )+. We will show   is decidable by constructing a Turing machine   

as follows: 

 Check that   is a proper DFA, otherwise reject. 

 Construct a DFA    that recognizes *        ( )+ (detailed later). 

 Simulate the Turing machine from the book that decides       on the input 〈    〉. If it accepts, accept. Otherwise, 

reject. 

We can build the DFA    by first constructing an NFA from   by reversing all transitions, making the previous start state 

the only new accepting state, and creating a new start state with   transitions to all previous accepting state (that now 

should not accept). Then a DFA can be constructed from this NFA. 

 

4.20) 

Let                *                                   ( )               +. We prove             is 

decidable by constructing a Turing machine   that decides it as follows: 

 Check   is a proper regular expression, otherwise reject. 

 Construct a DFA   from the input regular expression   (such that  ( )   ( )). 

 Construct a DFA   that recognizes  ( )     (where   is the alphabet of  ). 

 Construct a DFA   that recognizes  ( )  ( ). 

 Simulate the TM from the book that decides      on the input 〈 〉. if it accepts, accept. Otherwise, reject. 

The idea is that if   generates a prefix-free language, then any string   generated by   cannot be a prefix of any other 

string generated by  . The language of all strings that have any   that is generated by   as a prefix is  ( )      

*           ( )     +, thus if the intersection of that language with  ( ) is not empty, it means  ( ) contains 

some string(s) with a proper prefix from  ( ) itself. Therefore checking whether that intersection is empty checks the 

required condition of               . 

A similar approach for showing                is decidable will fail since context-free languages are not closed under 

intersection, thus the construction of   cannot fit when applied to context-free languages. 

 

4.22) 

Let   *〈 〉                                     +. Following is a proof that   is decidable. We will construct a Turing 

machine   that decides   as follows: 

 Check that   is a proper PDA, otherwise reject. 
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 For any state   in  : 

o Mark   as the only accepting state, and denote that PDA as   . 

o Use the Turing machine that decides      on   . If it accepts – accept. 

 If got to this point, reject. 

Clearly if marking any state   as the only accepting state, and the language recognized by that variant is empty, then there 

exists a useless state in the input PDA  . 

 

4.26) 

Let   *〈   〉                                                                     +. Following is a proof that   is 

decidable. We will construct a Turing machine   that decides   as follows: 

 Construct a DFA   that recognizes that language of the regular expression    * +     (all strings with   as their 

substring). 

 Construct a CFG   for the context-free language  ( )  ( ) (which is also context-free). 

 Simulate the Turing machine that decides      on  ( ). If it accepts, reject. Otherwise, accept. 

We know that the language that is an intersection of a CFL and a regular language is also a CFL, therefore   will be a CFG. 

Moreover,  ( ) is the language of all strings with   as their substring, and is a regular language (described above ina a 

regular expression). Therefore if   generates some string   with   as its substring, the intersection,  ( ), should be non-

empty. 

 

4.27) 

Let      *〈   〉   ( )                                            +. Following is a proof that      is decidable. 

We will construct a Turing machine   that decides      as follows: 

 Check that   is a proper CFG and that     or    . If not, reject. 

 Construct a PDA   from  , and run       ( ) (from exercise 4.10). 

 If     and       ( ) accepted, accept. 

 If     and       ( ) rejected, reject. 

 Otherwise (    and        rejected), calculate the pumping length   of  ( ) (can be calculated from the number 

of variables in the Chomsky normal form of  ), initialize a counter to 0 and iterate over all strings   in of size 

         : 

o Simulate   on  . If it accepts, increase the counter by 1. 

 At the end, if the counter   , accept. Otherwise, reject. 

We have proven that        is decidable, and it is TM possible to construct a PDA from a given CFG. Therefore if     it 

is easy to check if the input is in the     . Otherwise, we know that any string in the language is of length at most   

(excluding), otherwise it could be pumped forever and the  ( ) would be infinite, which we already know is not true. 
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Therefore it is sufficient to check this finite number of strings, and count whether there are exactly   strings of them that 

are accepted by   (that is, its corresponding PDA  ). 

 


