
Ariel Stolerman \ CS525 Chapter #4 Preparation
 1

CS525 Winter 2012 \ Chapter #4 Preparation

Ariel Stolerman

Problems

4.10)

Let *〈 〉 () +. Following is a proof that is decidable:

A context-free language is infinite if there exists a cycle within its derivation rules. For PDAs, we can construct a CFG

corresponding to any given PDA and test it. Therefore we can construct a Turing machine that given the input does as

follows:

 Check if the input is a valid encoding of a PDA. If not, reject.

 Create a CFG that is equivalent to , i.e. () (), and convert to Chomsky normal form.

 Look for a cycle in the grammar’s rules in BFS (in order to avoid infinite loops) such that at any iteration on the cycle

the generated string is pumped (i.e. the cycles describes a derivation of the form

→ where and are

terminals).

 If found such cycle, accept. Otherwise, reject.

4.12)

Let *〈 〉 () ()+. Following is a proof that is decidable. We will show a

Turing machine that decides :

 Check that are proper regular expressions, otherwise reject.

 Construct a NFA from the regular expression (such that () ()), and then a DFA from .

 Construct a NFA from the regular expression (such that () ()), and then a DFA from .

 Construct a DFA that recognizes () ()̅̅ ̅̅ ̅̅ .

 Simulate the TM from the book that decides on . If it accepts, accept. Otherwise, reject.

Note that if () is not fully contained within () then () () () ()̅̅ ̅̅ ̅̅ . Furthermore, the

construction of the NFAs and DFAs can be done using a Turing machine, and the intersection of regular languages is a

regular language, so we can construct a DFA for it. Thus if the intersection above is discovered to be empty, () must be

fully contained in (), and so () is fully contained in ().

4.15)

Let *〈 〉 () +. Following is a proof that is

decidable. We will construct a Turing machine that decides as follows:

 Check that is a proper regular expression, otherwise reject.

 Construct a DFA from the regular expression (such that () ()).

Ariel Stolerman \ CS525 Chapter #4 Preparation
 2

 Construct a DFA that recognizes the language of the regular expression * + .

 Construct a DFA that recognizes the language () ().

 Simulate the TM from the book that decides on . If it accepts, reject. Otherwise, accept.

Clearly if () contains some string that contains 111, its intersection with the language of all strings that contain 111

should be non-empty. Thus simulating the Turing machine that decides whether that intersection is empty and returning

the opposite answer is correct.

4.16)

Following is a proof that is decidable by testing all DFAs on two strings up to a certain size, and that size as a

function of the definitions of the two input DFAs. Let *〈 〉 () ()+. Let be a

Turing machine that decides and defined as follows:

 Verify the input 〈 〉 describes 2 valid DFAs and with the same alphabet . If not, reject.

 Calculate and the number of states in each of the DFAs.

 Enumerate all strings in up to length , and for each such string :

o Simulate on

o Simulate on

o If the result of the two simulations is different, reject. Otherwise continue.

 If got here (after all strings), accept.

The reason we can check only the first strings is that if the 2 DFAs do not accept the same language, there must be a

string of size for which () (). Assume by contradiction that the first string that yields a different

output of and is and , then there is a sequence of states and

that describe the transitions for in and respectively. Since , putting those sequences side by side, there

must be some repetition of a pair of sequences and such that . Therefore we can remove

all subsequences in between leaving only and by that get a smaller string that will act the same over exactly

as over . We can “pump” down until receiving a string of length , thus contradicting the assumption – as there we

have found a string with length such that () (). Therefore checking all strings up to size

is sufficient.

4.18)

Let be two disjoint co-Turing-recognizable languages. Since is co-Turing-recognizable, then there exists a Turing

machine that recognizes ̅. In the same manner, there exists a Turing machine that recognizes ̅. Since are

disjoint then , therefore ̅̅ ̅̅ ̅̅ ̅ ̅ . We will construct the following TM :

 Simulate and on the input string alternatively. If accepts, reject. Otherwise (if accepts), accept.

Since the simulation of is interleaved with the simulation of , and () () , the simulation will always

have a finite number of steps and get to an accepting / rejecting state. For all , if then ̅ ̅

Ariel Stolerman \ CS525 Chapter #4 Preparation
 3

thus will never accept, and will, so accepts, thus (). In a similar manner, if , then

rejects, thus () ()̅̅ ̅̅ ̅̅ ̅. Therefore we have found a decidable language () (since always halts

with a decision) and () ()̅̅ ̅̅ ̅̅ ̅, as required.

4.19)

Let *〈 〉 () ()+. We will show is decidable by constructing a Turing machine

as follows:

 Check that is a proper DFA, otherwise reject.

 Construct a DFA that recognizes * ()+ (detailed later).

 Simulate the Turing machine from the book that decides on the input 〈 〉. If it accepts, accept. Otherwise,

reject.

We can build the DFA by first constructing an NFA from by reversing all transitions, making the previous start state

the only new accepting state, and creating a new start state with transitions to all previous accepting state (that now

should not accept). Then a DFA can be constructed from this NFA.

4.20)

Let * () +. We prove is

decidable by constructing a Turing machine that decides it as follows:

 Check is a proper regular expression, otherwise reject.

 Construct a DFA from the input regular expression (such that () ()).

 Construct a DFA that recognizes () (where is the alphabet of).

 Construct a DFA that recognizes () ().

 Simulate the TM from the book that decides on the input 〈 〉. if it accepts, accept. Otherwise, reject.

The idea is that if generates a prefix-free language, then any string generated by cannot be a prefix of any other

string generated by . The language of all strings that have any that is generated by as a prefix is ()

* () +, thus if the intersection of that language with () is not empty, it means () contains

some string(s) with a proper prefix from () itself. Therefore checking whether that intersection is empty checks the

required condition of .

A similar approach for showing is decidable will fail since context-free languages are not closed under

intersection, thus the construction of cannot fit when applied to context-free languages.

4.22)

Let *〈 〉 +. Following is a proof that is decidable. We will construct a Turing

machine that decides as follows:

 Check that is a proper PDA, otherwise reject.

Ariel Stolerman \ CS525 Chapter #4 Preparation
 4

 For any state in :

o Mark as the only accepting state, and denote that PDA as .

o Use the Turing machine that decides on . If it accepts – accept.

 If got to this point, reject.

Clearly if marking any state as the only accepting state, and the language recognized by that variant is empty, then there

exists a useless state in the input PDA .

4.26)

Let *〈 〉 +. Following is a proof that is

decidable. We will construct a Turing machine that decides as follows:

 Construct a DFA that recognizes that language of the regular expression * + (all strings with as their

substring).

 Construct a CFG for the context-free language () () (which is also context-free).

 Simulate the Turing machine that decides on (). If it accepts, reject. Otherwise, accept.

We know that the language that is an intersection of a CFL and a regular language is also a CFL, therefore will be a CFG.

Moreover, () is the language of all strings with as their substring, and is a regular language (described above ina a

regular expression). Therefore if generates some string with as its substring, the intersection, (), should be non-

empty.

4.27)

Let *〈 〉 () +. Following is a proof that is decidable.

We will construct a Turing machine that decides as follows:

 Check that is a proper CFG and that or . If not, reject.

 Construct a PDA from , and run () (from exercise 4.10).

 If and () accepted, accept.

 If and () rejected, reject.

 Otherwise (and rejected), calculate the pumping length of () (can be calculated from the number

of variables in the Chomsky normal form of), initialize a counter to 0 and iterate over all strings in of size

 :

o Simulate on . If it accepts, increase the counter by 1.

 At the end, if the counter , accept. Otherwise, reject.

We have proven that is decidable, and it is TM possible to construct a PDA from a given CFG. Therefore if it

is easy to check if the input is in the . Otherwise, we know that any string in the language is of length at most

(excluding), otherwise it could be pumped forever and the () would be infinite, which we already know is not true.

Ariel Stolerman \ CS525 Chapter #4 Preparation
 5

Therefore it is sufficient to check this finite number of strings, and count whether there are exactly strings of them that

are accepted by (that is, its corresponding PDA).

