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Problems 

4.10) 

Let        *〈 〉                   ( )                        +. Following is a proof that        is decidable: 

A context-free language is infinite if there exists a cycle within its derivation rules. For PDAs, we can construct a CFG 

corresponding to any given PDA and test it. Therefore we can construct a Turing machine   that given the input   does as 

follows: 

 Check if the input   is a valid encoding of a PDA. If not, reject. 

 Create   a CFG that is equivalent to  , i.e.  ( )   ( ), and convert   to Chomsky normal form. 

 Look for a cycle in the grammar’s rules in BFS (in order to avoid infinite loops) such that at any iteration on the cycle 

the generated string is pumped (i.e. the cycles describes a derivation of the form  
 
→    where        and     are 

terminals). 

 If found such cycle, accept. Otherwise, reject. 

 

4.12) 

Let   *〈   〉                                   ( )   ( )+. Following is a proof that   is decidable. We will show a 

Turing machine   that decides  : 

 Check that     are proper regular expressions, otherwise reject. 

 Construct a NFA    from the regular expression   (such that  ( )   ( )), and then a DFA   from   . 

 Construct a NFA    from the regular expression   (such that  ( )   ( )), and then a DFA   from   . 

 Construct a DFA   that recognizes  ( )  ( )̅̅ ̅̅ ̅̅ . 

 Simulate the TM from the book that decides      on  . If it accepts, accept. Otherwise, reject. 

Note that if  ( ) is not fully contained within  ( ) then     ( )    ( )     ( )  ( )̅̅ ̅̅ ̅̅ . Furthermore, the 

construction of the NFAs and DFAs can be done using a Turing machine, and the intersection of regular languages is a 

regular language, so we can construct a DFA for it. Thus if the intersection above is discovered to be empty,  ( ) must be 

fully contained in  ( ), and so  ( ) is fully contained in  ( ). 

 

4.15) 

Let   *〈 〉                                ( )                            +. Following is a proof that   is 

decidable. We will construct a Turing machine   that decides   as follows: 

 Check that   is a proper regular expression, otherwise reject. 

 Construct a DFA   from the regular expression   (such that  ( )   ( )). 
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 Construct a DFA   that recognizes the language of the regular expression    *   +    . 

 Construct a DFA   that recognizes the language  ( )  ( ). 

 Simulate the TM from the book that decides      on  . If it accepts, reject. Otherwise, accept. 

Clearly if  ( ) contains some string that contains 111, its intersection with the language of all strings that contain 111 

should be non-empty. Thus simulating the Turing machine that decides whether that intersection is empty and returning 

the opposite answer is correct. 

 

4.16) 

Following is a proof that       is decidable by testing all DFAs on two strings up to a certain size, and that size as a 

function of the definitions of the two input DFAs. Let       *〈   〉                     ( )   ( )+. Let   be a 

Turing machine that decides       and defined as follows: 

 Verify the input 〈   〉 describes 2 valid DFAs   and   with the same alphabet  . If not, reject. 

 Calculate        and        the number of states in each of the DFAs. 

 Enumerate all strings in   up to length    , and for each such string  : 

o Simulate   on   

o Simulate   on   

o If the result of the two simulations is different, reject. Otherwise continue. 

 If got here (after all     strings), accept. 

The reason we can check only the first     strings is that if the 2 DFAs do not accept the same language, there must be a 

string   of size         for which  ( )   ( ). Assume by contradiction that the first string that yields a different 

output of   and   is    and           , then there is a sequence of states               and               

that describe the transitions for    in   and   respectively. Since      , putting those sequences side by side, there 

must be some repetition of a pair of sequences       and       such that                . Therefore we can remove 

all subsequences in between leaving only       and by that get a smaller string     that     will act the same over exactly 

as over   . We can “pump” down until receiving a string of length     , thus contradicting the assumption – as there we 

have found a string     with length           such that  (   )   (   ). Therefore checking all strings up to size      

is sufficient. 

 

4.18) 

Let     be two disjoint co-Turing-recognizable languages. Since   is co-Turing-recognizable, then there exists a Turing 

machine    that recognizes  ̅. In the same manner, there exists a Turing machine    that recognizes  ̅. Since     are 

disjoint then      , therefore    ̅̅ ̅̅ ̅̅   ̅  ̅    . We will construct the following TM  : 

 Simulate    and    on the input string   alternatively. If    accepts, reject. Otherwise (if    accepts), accept. 

Since the simulation of    is interleaved with the simulation of   , and  (  )  (  )    , the simulation will always 

have a finite number of steps and get to an accepting / rejecting state. For all     , if     then        ̅    ̅ 
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thus    will never accept, and    will, so   accepts, thus        ( ). In a similar manner, if    , then   

rejects, thus        ( )     ( )̅̅ ̅̅ ̅̅ ̅. Therefore we have found a decidable language  ( ) (since   always halts 

with a decision) and    ( )    ( )̅̅ ̅̅ ̅̅ ̅, as required. 

 

4.19) 

Let   *〈 〉                     ( )      ( )+. We will show   is decidable by constructing a Turing machine   

as follows: 

 Check that   is a proper DFA, otherwise reject. 

 Construct a DFA    that recognizes *        ( )+ (detailed later). 

 Simulate the Turing machine from the book that decides       on the input 〈    〉. If it accepts, accept. Otherwise, 

reject. 

We can build the DFA    by first constructing an NFA from   by reversing all transitions, making the previous start state 

the only new accepting state, and creating a new start state with   transitions to all previous accepting state (that now 

should not accept). Then a DFA can be constructed from this NFA. 

 

4.20) 

Let                *                                   ( )               +. We prove             is 

decidable by constructing a Turing machine   that decides it as follows: 

 Check   is a proper regular expression, otherwise reject. 

 Construct a DFA   from the input regular expression   (such that  ( )   ( )). 

 Construct a DFA   that recognizes  ( )     (where   is the alphabet of  ). 

 Construct a DFA   that recognizes  ( )  ( ). 

 Simulate the TM from the book that decides      on the input 〈 〉. if it accepts, accept. Otherwise, reject. 

The idea is that if   generates a prefix-free language, then any string   generated by   cannot be a prefix of any other 

string generated by  . The language of all strings that have any   that is generated by   as a prefix is  ( )      

*           ( )     +, thus if the intersection of that language with  ( ) is not empty, it means  ( ) contains 

some string(s) with a proper prefix from  ( ) itself. Therefore checking whether that intersection is empty checks the 

required condition of               . 

A similar approach for showing                is decidable will fail since context-free languages are not closed under 

intersection, thus the construction of   cannot fit when applied to context-free languages. 

 

4.22) 

Let   *〈 〉                                     +. Following is a proof that   is decidable. We will construct a Turing 

machine   that decides   as follows: 

 Check that   is a proper PDA, otherwise reject. 
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 For any state   in  : 

o Mark   as the only accepting state, and denote that PDA as   . 

o Use the Turing machine that decides      on   . If it accepts – accept. 

 If got to this point, reject. 

Clearly if marking any state   as the only accepting state, and the language recognized by that variant is empty, then there 

exists a useless state in the input PDA  . 

 

4.26) 

Let   *〈   〉                                                                     +. Following is a proof that   is 

decidable. We will construct a Turing machine   that decides   as follows: 

 Construct a DFA   that recognizes that language of the regular expression    * +     (all strings with   as their 

substring). 

 Construct a CFG   for the context-free language  ( )  ( ) (which is also context-free). 

 Simulate the Turing machine that decides      on  ( ). If it accepts, reject. Otherwise, accept. 

We know that the language that is an intersection of a CFL and a regular language is also a CFL, therefore   will be a CFG. 

Moreover,  ( ) is the language of all strings with   as their substring, and is a regular language (described above ina a 

regular expression). Therefore if   generates some string   with   as its substring, the intersection,  ( ), should be non-

empty. 

 

4.27) 

Let      *〈   〉   ( )                                            +. Following is a proof that      is decidable. 

We will construct a Turing machine   that decides      as follows: 

 Check that   is a proper CFG and that     or    . If not, reject. 

 Construct a PDA   from  , and run       ( ) (from exercise 4.10). 

 If     and       ( ) accepted, accept. 

 If     and       ( ) rejected, reject. 

 Otherwise (    and        rejected), calculate the pumping length   of  ( ) (can be calculated from the number 

of variables in the Chomsky normal form of  ), initialize a counter to 0 and iterate over all strings   in of size 

         : 

o Simulate   on  . If it accepts, increase the counter by 1. 

 At the end, if the counter   , accept. Otherwise, reject. 

We have proven that        is decidable, and it is TM possible to construct a PDA from a given CFG. Therefore if     it 

is easy to check if the input is in the     . Otherwise, we know that any string in the language is of length at most   

(excluding), otherwise it could be pumped forever and the  ( ) would be infinite, which we already know is not true. 
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Therefore it is sufficient to check this finite number of strings, and count whether there are exactly   strings of them that 

are accepted by   (that is, its corresponding PDA  ). 

 


