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2.26) 

Let   be a CFG in Chomsky Normal Form. Following is a proof that for any    ( ) of length     exactly      steps 

are required for any derivation of  . We prove by induction on the length of  ,  . 

Since   is a CFG in Chomsky Normal Form, then any rule is of the form:      (where the variables       and   is the 

start symbol),     (where the terminal    ) and it may contain    . 

First, for any     such that | |   , it must be derived by a rule    , where   is the start symbol and   is a terminal 

different than  . It cannot be that    , otherwise | |   . Also, it cannot be derived starting at a rule     , since 

neither   nor   can derive  , therefore any derivation starting at      derives a string with length   . Therefore the 

derivation must be by the sequence of rules       (where    ), which contains only one step, and satisfies the 

required         rules in any derivation of   of size  . 

Now assume that any string of size strictly less than   in   satisfies the claim, and let   be a string in   of size  . The case 

in which   is a single terminal is handled in the base case of the induction. Therefore for any   of size greater than 1 the 

first step in the derivation has to be of the form     , where   is the start symbol and     are variables. Moreover, 

since     cannot be  , they cannot derive a string of size 0 ( ), thus we can say that     and     where     are non-

empty strings, and      (the concatenation of   and  ). Denote | |    and | |   , so       (and      ). 

Therefore according to the induction assumption   is derived in      steps and   is derived in      steps. Since   is 

derived by the step      followed by the derivations of   and   (in some order), the total derivation steps for   are: 

  (    )  (    )   (   )         

Thus proving the claim. 

 

2.27) 

a. 

Following is an example for an ambiguous string in  ( ) for the given grammar   with 2 different derivations: 

   if condition then if condition then a:=1 else a:=1 

 

STMT 

if condition then STMT 

if condition then STMT else STMT 

ASSIGN ASSIGN 

a:=1 a:=1 

STMT 

if condition then STMT 

if condition then STMT else STMT 

ASSIGN 

ASSIGN 

a:=1 

a:=1 
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b. 

Following is an unambiguous grammar for the same language: 

<STMT>   <ASSIGN> | <IF-THEN> | <IF-THEN-ELSE> 
<IF-THEN>   if condition then <STMT> | if condition then <IF-THEN-ELSE> else <IF-THEN> 

<IF-THEN-ELSE>   if condition then <IF-THEN-ELSE> else <IF-THEN-ELSE> | <ASSIGN> 
<ASSIGN>   a:=1 

 

2.28) 

Following are unambiguous grammars for the given languages. 

a. 

  *  |                               + 

      |    |   

      |   

 

b. 

  *  |               + 

       |      |   

      |     |    

      |     |    

 

c. 

  *              + 

       |      |    |   

      |     |    

      |     |    

 

2.29 

Let   *       |                         +. Following is a proof that   is inherently ambiguous: 

Following is an example grammar for the string: 

     |    
      
     |   
     |   
      

This grammar is ambiguous, yet it does not prove that no unambiguous grammar for   exists. However, the only way to 

ensure for the strings where     that indeed           is with a rule like      . For instance,          must be 

derived from any grammar of  , for any   (representing the number of    ), thus it also must have rules that can derive any 

number of     like      |  . Similarly for strings where     we need a rule like       to ensure          . For 
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instance,          must be derived from any grammar of  , for any   (representing the number of    ), thus it also 

must have rules that can derive any number of     like      |  . 

Therefore, any grammar for   must be able to derive strings of the form          in at least two ways: once using   

times the derivation of the same number of     and     followed by   times the derivation of    , and once using   times 

the derivation of the same number of     and     followed by   times the derivation of    . Therefore any grammar for   is 

ambiguous, thus   is inherently ambiguous. 

 

2.30 

Following are proofs using the pumping lemma that   is not a CFL. 

a. 

Let   *         |    +. 

Assume that   is a CFL, and let            where   is the pumping length of  . Clearly    , but any partition of   

into       where |  |    and |   |    satisfies that          : if we denote the first    as  , first    as  , second 

   as   and second    as   then since |   |    the whole substring     crosses at most only two consecutive sectors, i.e. 

it is all part of                  . In all of those cases, since |  |    then either | |   , | |    or both. Therefore 

it cannot be that the pumping will change all sectors         (at most two will change) thus          , in contradiction 

to the assumption. Therefore   is not a CFL. 

d. 

Let   {           |           *   +                    }. 

Assume that   is a CFL and let             where   is the pumping length of  . Clearly    , but any partition of   

into       where |  |    and |   |    satisfies that          : 

Since this string contains only 2  ’s, it is sufficient to show that the pumping will make    (the substring before the  ) and    

(the substring after the  ) different. 

 If     is contained completely in    (before the  ), since at least one of     has length   , the pumping will alter    to 

be different than    with either different number of a’s or b’s (or both), thus      . 

 If     is partially contained in    and partially in   : 

o If either   or   contain the  , pumping (down) will eliminate it and the pumped string will contain only a single 

block of     and     such that the   in the language description will be equal to  , thus the pumped string will not 

be in  . 

o If neither   nor   contain the  , since at least one of     has length at least 1, the pumping will alter the number 

of  ’s in    or the number of     in    such that      . 

 If     is contained completely in   , it is similar to the first case. 

Therefore no partition of           into       by the conditions of the pumping lemma can derive         that will 

also be in   in contradiction to the assumption. Thus   is not a CFL. 
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2.31 

Let   *  *   +  |                                 +. Following is a proof that   is not a CFL: 

Assume   is a CFL, then it satisfies the conditions of the pumping lemma. Let   be the pumping length of   and let 

         . Clearly     since it is a palindrome (     reflects to     ) and has the same number of 0’s and 1’s (  ). 

But there exists no partition of         that satisfies the pumping lemma conditions and for which          : since 

|   |    it may be constructed of only 0’s, 0’s followed by 1’s or 1’s followed by 0’s. The cases: 

 If     consists only of 0’s, since at least one of     has length at least 1, then the pumped string will have more 0’s on 

the left half than on the right half, and will have more 0’s than 1’s, thus the pumped string will not be in  . This case is 

true for     consisting of 0’s only from the right half or only from the left half. 

 If     consists only of 1’s, similarly to the previous case, the string will have more 1’s than 0’s thus the pumped string 

will not be in   (although it might still be a palindrome). 

 If     consists partially of 0’s and partially of 1’s, i.e.          where        , since at least one of     has 

length at least 1, the pumping will result with: 

o If one of     spans over both 0’s and 1’s, the pumping will create a non-palindrome string, since it will add some 

pattern of          to the left hand side of the string, which will not be matched on the right hand side. 

o If   is only 0’s and   is only 1’s, the pumping will again create a string not in  , as either the left hand side will not 

be matched on the right, or it will violate the equality between the number of 0’s and 1’s. 

Therefore in any case the pumped string will not be in  , in contradiction to the assumption. Therefore   is not a CFL. 

 

2.32 

Let   *  *       + |                        +. Following is a proof that   is not a CFL: 

Assume   is a CFL, then it satisfies the conditions of the pumping lemma. Let   be the pumping length of   and let 

          . Clearly    . But there exists no partition of   into       such that satisfies the pumping lemma 

conditions and for which             : since |   |    it may be constructed of only 1’s, 1’s and 3’s, only 3’s, 3’s and 

2’s, only 2’s, 2’s and 4’s or only 4’s. The cases: 

 If     contains only 1’s, since at least one of     has length at least 1, then in    there will be more 1’s than 2’s, thus 

    . A similar violation happens when     is consisted of only 2’s, 3’s or 4’s. 

 If     contains both 1’s and 3’s, since at least one of     has length at least 1: 

o If one of     contains both 1’s and 3’s, then    will contain more 1’s than 2’s and more 3’s than 4’s, therefore 

    . 

o If one of     contains only 1’s or only 3’s, then    will contain more 1’s than 2’s or more 3’s than 4’s, therefore 

    . 

A similar violation happens when     is consisted of only 3’s and 2’s or only 2’s and 4’s. 

Therefore in any case the pumped string    will not be in  , in contradiction to the assumption. Therefore   is not a CFL. 
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2.33 

Let   *     |                                 + (fixed phrasing from the textbook errata webpage). Following is a 

proof that   is not a CFL: 

Assume   is a CFL, then it satisfies the conditions of the pumping lemma. Let   be the pumping length of   and let 

     
   where    . Clearly    , but for any partition of   into       such that|  |    and |   |    there exists 

a pumping of   to            such that     : 

 If     is consisted only of  ’s, since at least one of     has length at least 1 and |  |   , choosing     will remove 

between        ’s such that            will have between  (   )                      

  , therefore      cannot be a multiple of  , thus     . 

 If     is consisted only of  ’s, since at least one of     has length at least 1 and |  |   , choosing      will in any 

case pump the number of  ’s to be more than the number of  ’s (the least number of  ’s will be in       
       

), 

so that it cannot be an integer multiplication of the number of  ’s. Thus     . 

 If     is consisted of both  ’s and  ’s, since at least one of     has length at least 1: 

o If one of     contains both  ’s and  ’s, choosing     will make    contain some  ’s before  ’s so    will not be 

of the form     , thus     . 

o If   contains only  ’s and   contains only  ’s (and | | | |    otherwise it is one of the previous cases), denote 

| |    | |   . Note that   
    

    
 

       

      
 

     

     

    
 and for     we must show there exists some   such 

that this   is not an integer. For     we get   
  

 
  ; for     we get 

 

 
. Since            , we 

get 
 

   
 

 

 
    . In the largest range possible,   will be in (

 

 
  ]  (

 

   
  ], which has a finite number of 

integers. Since all     derive distinct  ’s, there must be some   for which   will not be an integer, thus     . 

Therefore in any case the pumped string    will not be in  , in contradiction to the assumption. Therefore   is not a CFL. 

 

2.34 

Let   be a grammar of the language    ( ) with the following rules: 

     |   

     |    |   

       |   

Find the minimum pumping length   of   that will work in the pumping lemma. 
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2.35 

Let   be a CFG in Chomsky normal form that contains   variables and let   be some string generated by   with at least    

steps. Following is a proof that  ( ) is infinite: 

Following the proof of the pumping lemma for CFLs in the book, any binary tree of height   has at most    leaves (where 

the root is of height 0), and the number of internal nodes is at most      (when the number of leaves is indeed   ). 

Therefore if the number of internal nodes is at least   , the height of the tree will be at least    . 

Since the grammar is in Chomsky normal form, the maximum number of symbols on the right hand side of any rule is 2 (2 

variables), thus any node in a parse tree of the grammar will have at most 2 children. If there exists a string    ( ) such 

that it is derived with at least    steps, it must have at least    internal nodes, therefore the height of the parse tree will be 

at least    . Continuing as in the pumping lemma proof, this means any parse tree of   would have a path of length   

 , i.e. constructed of at least     symbols where the last one (leaf) is a terminal, and the first     (or more) are 

variables. Since there are only   variables, following the pigeon-hole principle, at least one variable appears along the path 

at least twice. Let   be a repeating variable among the lowest     variables, then we can replace the lower appearance 

with the higher one as many times as we like, pumping   forever, where each pumped string is in  ( ) (since we are getting 

a legal parse tree), thus proving  ( ) is infinite. 

 


