CS521\ lec10 2011-11-29 Ariel Stolerman

Reductions and NP-Completeness — Contd.
k — CNFSat:
When k = 1, the problem is easy: satisfy all literals and if for some variable x, the formula includes also %, it will not be

satisfied. For k = 2, it is also easy to solve. For k = 3, the problem becomes hard.

3CNF-SAT:

An input formula: ¢ (Xy, ..., X, X7, ..., %) = A}L; Cy, where the clauses Cj, = (I;VI,VI3) where [; € {x1, ..., Xp, X7, ..., X ).
3CNF € NP: a verifying algorithm simply takes a poly-length satisfying assignment < by, ..., b,, >, plugs it in ¢ and tests
whether the formula is satisfied.

3CNF € NPC:

We will show a reduction CNF — SAT <p 3CNF — SAT.

Given B(Xq, v, Xp, X1, s X)) = CiA . AC;A .. ACyy where C; = ([;V ...VI). We will create ¢p = KjA..AKA ... AKy
where K; = (y,Vy,Vy3). We willuse 2: € < [;VI,V ...Vl >— A(C) € 3CNF - given a clause it creates a formula in 3CNF.
We then define: ¢ = A(C)AA(C,A ... AA(C)y,) — the conjunction of 3CNF formulas derives a 3CNF formula.

It is then sufficient that A(C) is satisfyable if and only if C is satisfyable. That would work only when k > 3.

The reduction A:

Foragiven C = ([VL,V ...VL,) inaformula B(z,, ..., zp, Z1, ..., Zy) = Ci/\ ... ACy, we convert it as follows:

A(C) = (LVLVx )N VIEV )NV )N o A —3V -1 V1), Where x4, ..., X;,—3 are new variables.

We claim that C is satisfyable iff A(C) is satisfyable:

Assume C is satisfyable, then at least one of [, ..., [, is TRUE (and the other could be FALSE). W.L.0.G. assume [, = T. We
will assign the other variables such that all clauses are satisfied. In this case, assign x; = T to satisfy the first clause; in the
second clause X7, forcing use to assign x, = T. This goes all the way to the last clause, and so all clauses are satisfied.
Assume C is NOT satisfyable, then [, ..., L, = F. In this case we must assign x; = T to satisfy the first clause, which forces
us to assign all other x; = T. But then the last clause is (%;;;_3Vl;,—1Vly), and literal in it ends up being FALSE, thus A(C) is
also not satisfyable.

The reduction is polynomial, as every (almost) literal maps to a 3-variable clause, and we the number of added variables per
clause is 2m, thus the total size / time is: O(m - M) + O(m - M), which is polynomial in the input size. Therefore we have

proven that 3CNF — SAT € NP — Hard, thusitisin NPC.

2CNF-SAT:

We will show that 2CNF — SAT € P. For a formula in 2CNF every clause has 2 variables. Notice that:

(V1) is satisfyable iff (I = 1,)V(I; = ;) is satisfyable.

Gy, o) X, X1, o, X)) = ALy € where C; = (I; = 1,)V(I, = 1;). We will create a graph with every variable as a node,
and every = will correspond to a directed edge in the graph. This construct is polynomial time, as it has 2N vertices and 2N

edges. When will the formula not be satisfyable? IF the graph contains a cycle with both some variable and its complement.



CS521\ lec10 2011-11-29 Ariel Stolerman

So after constructing the graph we will identify the SCC graph, and make sure we have more than 1 component (otherwise
it’s one cycle with all variables and their complements) and that every component doesn’t contain both a variable and its
complement. Since the SCC graph is a DAG we can satisfy it — we find a topological sort, satisfy the last component and

assign the rest accordingly. The algorithm is actually linear, which is polynomial.

K-Colorability:

An input of the problem: set of colors C = {cj, ..., ¢} and an undirected graph G = (V, E). We say G is k-colorable if there
existsamap X:V — C such that V(u,v) € E: X(u) # X(v).

An easy problem is 2COL: a graph is 2-colorable iff a graph is bipartite (and that’s easily verified by looking for odd cycles).
K-COL is NP: given a coloring, we color every edge and check the condition is satisfied. That’s actually linear.

We will show k — CNF — SAT <p 3COL, thus showing itis NP — hard (and thus NPC).

Given a formula ¢ € k — CNF we will create a pair < G, C > of a graph and set of colors such that ¢ € k — CNF — SAT &
< G,C >€ 3COL. To ensure we will need 3 colors, our graph will contain a triangle (odd cycle of size 3), such that it
requires 3 colors. We will map TRUE = GREEN and FALSE = RED.

We create a vertex v € V for each x4, ..., x,, X1, ..., X,,. To make sure x; and X, won’t get the same color, we connect them.
In addition, we connect every one of them to the dummy BLUE node from the triangle. This way every one of x;, X, must be
either RED or GREEN, and no variable and its complement can have the same coloring.

In addition, for every clause we create a gadget in the graph such that the clause is satisfyable iff the gadget is 3-colorable.
Build the gadget example:

Let C = (xVyVzVuVoVw) — an EVEN sized clause. We create the following structure:

N

ORORO

We have 2 new nodes per each variable-node (x,y,...), and in addition we have the green node from before, here

represented as different nodes (but they are all the same one).



CS521 \ lec10 2011-11-29 Ariel Stolerman

Assume we had a satisfying assignment, where only Z = TRUE:

23!

Assume we don’t have a satisfying assignment:

::E E Problem!

When dealing with ODD-sized clauses, the right-most node simply needs to be set to red instead of green. The

interchanging colors (red/green) in the lower row of nodes will get stuck for a non-satisfying assignment.



