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Reductions and NP-Completeness – Contd. 

        : 

When    , the problem is easy: satisfy all literals and if for some variable  , the formula includes also  ̅, it will not be 

satisfied. For    , it is also easy to solve. For    , the problem becomes hard. 

 

3CNF-SAT: 

An input formula:  (          ̅̅̅     ̅̅ ̅)  ⋀   
 
   , where the clauses    (        ) where    *          ̅̅̅     ̅̅ ̅+. 

       : a verifying algorithm simply takes a poly-length satisfying assignment          , plugs it in   and tests 

whether the formula is satisfied. 

        : 

We will show a reduction                  . 

Given  (          ̅̅̅     ̅̅ ̅)    ⋀ ⋀  ⋀ ⋀   where    (       ). We will create      ⋀ ⋀  ⋀ ⋀   

where    (        ). We will use                  ( )       – given a clause it creates a formula in 3CNF. 

We then define:     (  )⋀ (  ⋀ ⋀ (  ) – the conjunction of 3CNF formulas derives a 3CNF formula. 

It is then sufficient that  ( ) is satisfyable if and only if   is satisfyable. That would work only when    . 

The reduction  : 

For a given   (          ) in a formula  (          ̅     )    ⋀ ⋀  , we convert it as follows: 

 ( )  (        )⋀(  ̅̅̅      )⋀(  ̅̅ ̅      )⋀ ⋀(            ), where           are new variables. 

We claim that   is satisfyable iff  ( ) is satisfyable: 

Assume   is satisfyable, then at least one of         is TRUE (and the other could be FALSE). W.L.O.G. assume     . We 

will assign the other variables such that all clauses are satisfied. In this case, assign      to satisfy the first clause; in the 

second clause   ̅̅̅, forcing use to assign     . This goes all the way to the last clause, and so all clauses are satisfied. 

Assume   is NOT satisfyable, then          . In this case we must assign      to satisfy the first clause, which forces 

us to assign all other     . But then the last clause is (    ̅̅ ̅̅ ̅̅ ̅        ), and literal in it ends up being FALSE, thus  ( ) is 

also not satisfyable. 

The reduction is polynomial, as every (almost) literal maps to a 3-variable clause, and we the number of added variables per 

clause is   , thus the total size / time is:  (   )   (   ), which is polynomial in the input size. Therefore we have 

proven that                 , thus it is in    . 

 

2CNF-SAT: 

We will show that           . For a formula in      every clause has 2 variables. Notice that: 

(     ) is satisfyable iff (  ̅    ) (  ̅    ) is satisfyable. 

 (          ̅̅̅     ̅̅ ̅)  ⋀   
 
    where    (  ̅    ) (  ̅    ). We will create a graph with every variable as a node, 

and every   will correspond to a directed edge in the graph. This construct is polynomial time, as it has    vertices and    

edges. When will the formula not be satisfyable? IF the graph contains a cycle with both some variable and its complement. 
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So after constructing the graph we will identify the SCC graph, and make sure we have more than 1 component (otherwise 

it’s one cycle with all variables and their complements) and that every component doesn’t contain both a variable and its 

complement. Since the SCC graph is a DAG we can satisfy it – we find a topological sort, satisfy the last component and 

assign the rest accordingly. The algorithm is actually linear, which is polynomial. 

 

K-Colorability: 

An input of the problem: set of colors   *       + and an undirected graph   (   ). We say   is  -colorable if there 

exists a map       such that  (   )     ( )   ( ). 

An easy problem is 2COL: a graph is 2-colorable iff a graph is bipartite (and that’s easily verified by looking for odd cycles). 

K-COL is NP: given a coloring, we color every edge and check the condition is satisfied. That’s actually linear. 

We will show                , thus showing it is         (and thus    ). 

Given a formula         we will create a pair       of a graph and set of colors such that              

          . To ensure we will need 3 colors, our graph will contain a triangle (odd cycle of size 3), such that it 

requires 3 colors. We will map TRUE = GREEN and FALSE = RED. 

We create a vertex     for each           ̅̅̅     ̅̅ ̅. To make sure    and   ̅ won’t get the same color, we connect them. 

In addition, we connect every one of them to the dummy BLUE node from the triangle. This way every one of      ̅ must be 

either RED or GREEN, and no variable and its complement can have the same coloring. 

In addition, for every clause we create a gadget in the graph such that the clause is satisfyable iff the gadget is 3-colorable. 

Build the gadget example: 

Let   (      ̅   ̅  ) – an EVEN sized clause. We create the following structure: 

 

We have 2 new nodes per each variable-node (     ), and in addition we have the green node from before, here 

represented as different nodes (but they are all the same one). 

  

𝑥 

  

  

𝑦 
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Assume we had a satisfying assignment, where only  ̅      : 

 

Assume we don’t have a satisfying assignment: 

 

 

When dealing with ODD-sized clauses, the right-most node simply needs to be set to red instead of green. The 

interchanging colors (red/green) in the lower row of nodes will get stuck for a non-satisfying assignment. 

 

𝑥 

  

  

𝑦 

  

  

 

  

𝑥 

  

  

𝑦 

  

  

 

  
Problem! 


