Reductions and NP-Completeness – Contd.

k – CNFSat:

When k = 1, the problem is easy: satisfy all literals and if for some variable x, the formula includes also \bar{x} , it will not be satisfied. For k = 2, it is also easy to solve. For k = 3, the problem becomes hard.

3CNF-SAT:

An input formula: $\phi(x_1, ..., x_n, \overline{x_1}, ..., \overline{x_n}) = \bigwedge_{i=1}^N C_N$, where the clauses $C_k = (l_1 \vee l_2 \vee l_3)$ where $l_j \in \{x_1, ..., x_n, \overline{x_1}, ..., \overline{x_n}\}$. $3CNF \in NP$: a verifying algorithm simply takes a poly-length satisfying assignment $\langle b_1, ..., b_n \rangle$, plugs it in ϕ and tests whether the formula is satisfied.

$3CNF \in NPC$:

We will show a reduction $CNF - SAT \leq_P 3CNF - SAT$.

Given $B(x_1, ..., x_n, \overline{x_1}, ..., \overline{x_n}) = C_1 \wedge ... \wedge C_i \wedge ... \wedge C_M$ where $C_i = (l_1 \vee ... \vee l_k)$. We will create $\phi_B = K_1 \wedge ... \wedge K_j \wedge ... \wedge K_N$ where $K_j = (y_1 \vee y_2 \vee y_3)$. We will use $\lambda: C < l_1 \vee l_2 \vee ... \vee l_k > \rightarrow \lambda(C) \in 3CNF$ – given a clause it creates a formula in 3CNF. We then define: $\phi_B = \lambda(C_1) \wedge \lambda(C_2 \wedge ... \wedge \lambda(C_M)$ – the conjunction of 3CNF formulas derives a 3CNF formula. It is then sufficient that $\lambda(C)$ is satisfyable if and only if C is satisfyable. That would work only when $k \ge 3$. The reduction λ :

For a given $C = (l_1 \vee l_2 \vee ... \vee l_m)$ in a formula $B(z_1, ..., z_n, \overline{z_1}, ..., z_n) = C_1 \wedge ... \wedge C_M$, we convert it as follows: $\lambda(C) = (l_1 \vee l_2 \vee x_1) \wedge (\overline{x_1} \vee l_3 \vee x_2) \wedge (\overline{x_2} \vee l_4 \vee x_3) \wedge ... \wedge (x_{m-3} \vee l_{m-1} \vee l_m)$, where $x_1, ..., x_{m-3}$ are new variables.

We claim that C is satisfyable iff $\lambda(C)$ is satisfyable:

Assume *C* is satisfyable, then at least one of $l_1, ..., l_m$ is TRUE (and the other could be FALSE). W.L.O.G. assume $l_m = T$. We will assign the other variables such that all clauses are satisfied. In this case, assign $x_1 = T$ to satisfy the first clause; in the second clause $\overline{x_1}$, forcing use to assign $x_2 = T$. This goes all the way to the last clause, and so all clauses are satisfied.

Assume *C* is NOT satisfyable, then $l_1, ..., l_m = F$. In this case we must assign $x_1 = T$ to satisfy the first clause, which forces us to assign all other $x_i = T$. But then the last clause is $(\overline{x_{m-3}} \vee l_{m-1} \vee l_m)$, and literal in it ends up being FALSE, thus $\lambda(C)$ is also not satisfyable.

The reduction is polynomial, as every (almost) literal maps to a 3-variable clause, and we the number of added variables per clause is 2m, thus the total size / time is: $O(m \cdot M) + O(m \cdot M)$, which is polynomial in the input size. Therefore we have proven that $3CNF - SAT \in NP - Hard$, thus it is in NPC.

2CNF-SAT:

We will show that $2CNF - SAT \in P$. For a formula in 2CNF every clause has 2 variables. Notice that:

 $(l_1 \vee l_2)$ is satisfyable iff $(\overline{l_1} \Rightarrow l_2) \vee (\overline{l_2} \Rightarrow l_1)$ is satisfyable.

 $\phi(x_1, ..., x_n, \overline{x_1}, ..., \overline{x_n}) = \bigwedge_{i=1}^M C_i$ where $C_i = (\overline{l_1} \Rightarrow l_2) \vee (\overline{l_2} \Rightarrow l_1)$. We will create a graph with every variable as a node, and every \Rightarrow will correspond to a directed edge in the graph. This construct is polynomial time, as it has 2N vertices and 2N edges. When will the formula not be satisfyable? IF the graph contains a cycle with both some variable and its complement.

So after constructing the graph we will identify the SCC graph, and make sure we have more than 1 component (otherwise it's one cycle with all variables and their complements) and that every component doesn't contain both a variable and its complement. Since the SCC graph is a DAG we can satisfy it – we find a topological sort, satisfy the last component and assign the rest accordingly. The algorithm is actually linear, which is polynomial.

K-Colorability:

An input of the problem: set of colors $C = \{c_1, ..., c_k\}$ and an undirected graph G = (V, E). We say G is k-colorable if there exists a map $X: V \to C$ such that $\forall (u, v) \in E: X(u) \neq X(v)$.

An easy problem is 2COL: a graph is 2-colorable iff a graph is bipartite (and that's easily verified by looking for odd cycles).

K-COL is NP: given a coloring, we color every edge and check the condition is satisfied. That's actually linear.

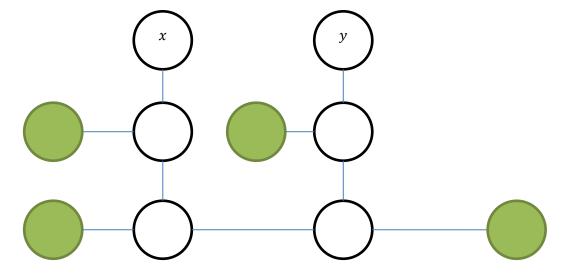
We will show $k - CNF - SAT \leq_P 3COL$, thus showing it is NP - hard (and thus NPC).

Given a formula $\phi \in k - CNF$ we will create a pair $\langle G, C \rangle$ of a graph and set of colors such that $\phi \in k - CNF - SAT \Leftrightarrow \langle G, C \rangle \in 3COL$. To ensure we will need 3 colors, our graph will contain a triangle (odd cycle of size 3), such that it requires 3 colors. We will map TRUE = GREEN and FALSE = RED.

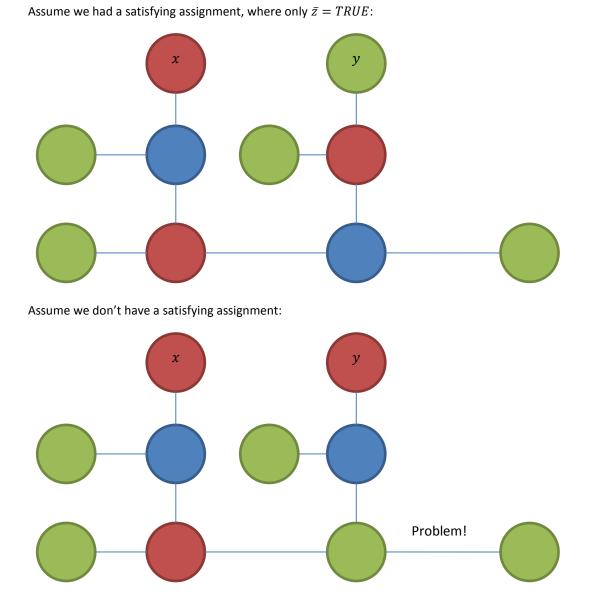
We create a vertex $v \in V$ for each $x_1, ..., x_n, \overline{x_1}, ..., \overline{x_n}$. To make sure x_i and $\overline{x_i}$ won't get the same color, we connect them. In addition, we connect every one of them to the dummy BLUE node from the triangle. This way every one of $x_i, \overline{x_i}$ must be either RED or GREEN, and no variable and its complement can have the same coloring.

In addition, for every clause we create a gadget in the graph such that the clause is satisfyable iff the gadget is 3-colorable. Build the gadget example:

Let $C = (x \forall y \forall \overline{z} \forall u \forall \overline{v} \forall w)$ – an EVEN sized clause. We create the following structure:



We have 2 new nodes per each variable-node (x, y, ...), and in addition we have the green node from before, here represented as different nodes (but they are all the same one).



When dealing with **ODD-sized clauses**, the right-most node simply needs to be set to **red** instead of **green**. The interchanging colors (red/green) in the lower row of nodes will get stuck for a non-satisfying assignment.