CS521\ lec07 2011-11-08 Ariel Stolerman

Single Source Shortest Paths

Shortest path:

An optimization problem, that given a graph G = (V, E) and a weight function w: E - R, find a path m =< v, ..., v; > -a

sequence suchthat V0 <1 <[— 1: (v;, v;41) € E (no loops simple path) such that w() = Y., w(e) is minimal, that is:

*(u, v) = argming.,_,,w () — the path from u to v with minimal weight, among all possible paths from u to v.

Notation:

e S(u,v)= w(n*(u, 17)) —the weight of the shortest path between u and v.

o AG = A, 4, such that (aij) = S(Ui,vj)

A(G) viewed as a distance function is a metric function. Meaning:

1. VweV(G):6(v,v) =0

2. Vu,veV(G):6(u,v) =6,u)

3. The triangle inequality: Vu,v,w € V(G): 6(u,v) < 6§(u,w) + §(w, v)

Applications:

e Routing problems: given a set of nodes and latency between them, find a shortest least delayed path to transmit from
one node to another.

e Robot movement: given a set of obstacles in a space and a robot that need to get from one point to another avoiding
the obstacles, find the shortest path for that.

So A(G) is an important matrix.

Variations of the SP problem:

e Single destination shortest path: a whole column in the matrix.

e Single pair shortest path: an entry in the matrix.

e All sources shortest paths: the whole matrix.

Is MST sufficient to compute SPs?

No. for instance, if we have a graph v; = v, = -+ v;9, = v, with all edges but the last weighted 1, and the last weighted 2.
The MST is all the 1-weight edges, but the shortest path v; = v, is the edge w(v1¢q, V1) = 2, Not w(v; = =+ = Vy49) =
99.

Non-unigueness of shortest paths:

There could be more than one shortest path in a graph.

Some properties:

e Say we have a shortest pathv; - v, >+ > v; - -+ > v; > -+ > v, then v; - -+ - v; is the shortest path from v;
to v;. This is easily proven by contradiction.

e Givenv; > - > ;

j =+ > vy where v; - - > v, v; - -+ > v are SPs, that doesn’t mean v; — -+ > v isa

shortest path. However the triangle-IE applies: §(v;, v,) < 5(Ui,17j) + S(Uj,vk). The < will become = iff v; is on some

shortest path between v;, ;.

CS521\ lec07 2011-11-08 Ariel Stolerman

Basic operation:
Start with an initial estimate d[u] that denotes the current value of the shortest path known from a source s to all other
u € V. The reduction of the weight of the edges is called relaxation.
For instance, say we have paths s —» u, s = v and an edge (u, v). We currently hold d[u], d[v] with some estimate values
(even o). If the case is d[v] > d[u] + w(u, v) then we change it to d[v] := d[u] + w(u, v) — we got a better estimate of
the shortest path. Formally:
Relax(u, v, w):
if dlv] > d[u] + w(u,v) then

d[v] =d[u]l + w(u,v)
end
How many times we need to relax? If we apply relaxation over and over lots of times, we would get shortest paths values in
all d fields eventually, but when.
The initial values are set:
e d[s]=0

o du]l=ow,Vu+s

Bellman-Ford algorithm:

The algorithm is just doing the above, but stating that after n = |V| runs of relaxing all e € E, we get the shortest paths.
After finishing it, we do one morerunon all e € E. If d[v] > d[u] + w(u, v), it means we have a negative cycle. This
algorithm is ®(nm) = 0(n3).

Negative cycles:

Assume we have a path vy - ==- = v; > -+ > v; > -+ > v such that there’s a negative cycle between v;, v;. That means
the more we do cycles in our path, we reduce the weight of the path.

Therefore, if after n iterations we don’t have all shortest paths it means the graph contains a negative cycle.

Why n times:

Given vy, = vy = - = Vg Where v is the source. We can’t only have only one relaxation (round of relaxations) since
we don’t know the order of relaxation of the edges. For instance we could relax (vy_q, V), ..., (v, V1) and that’s a
relaxation round that got us only one improvement — the value of v, is changed.

Therefore, at most k are relaxations are needed, and k < n(—1) so at most we would need n. Except if there’s a negative
cycle.

Dijkstra’s algorithm

Assumes all edge weights are non-negative.

Initialization:

e Initialization: the same as BF: d[s] = 0,d[u] = coVs #u €V

e Use a priority queue, initializedto Q =V

CS521\ lec07 2011-11-08 Ariel Stolerman

The top of the Q is the next node to be taken care of. Every extract — min we update all d-values of all adjacent nodes to
the node extracted.

u = extract — min(Q)

S = SU{u}

for each v € adj[ul:

Relax(u, v, w)

Note that the only difference between this algorithm and Prim’s MST algorithm is the d-value: at Prim’s it’s the weight of
one edge, here it’s the total weight of the path.
Running time:
Initialization is n; building Q based on d-values is linear. As long as we have values is Q we need to extract — min which
costs Ign (if using a min-heap). Updating the d-value for each v € adj[u], across all u would derives m operations, that
w.c. will conclude with a decrease — key for v which means 0(Ign).
That concludes to 0((n + m) Ign).
Why the top of Q holds the §:

At the time of extract — min of some node u € Q, we know that d[u] = &(s,). The reason is that all earlier extract-mins
got all smallest paths, and there is no negative weight that could make any other node down the queue be closer to s than
the one extracted now.

Shortest paths in DAG

A directed acyclic graph is a graph with no cycles. These graphs don’t have negative cycles. Using DFS we can apply a

topological sort on the graph, meaning it would take O(m + n).
The algorithm:
e Initialize all d-values to o except s
e Foreach u € V taken in topological order:
o Foreachv € adj[u]: Relax(u, v, w)
Running time: O(DFS + Y,y deg(u)) = 0(n + m).

Because there are no cycles, once a d-value is set, we know it cannot be changed again.

