
1
CS521 \ lec07 2011-11-08 Ariel Stolerman

Single Source Shortest Paths

Shortest path:

An optimization problem, that given a graph () and a weight function , find a path - a

sequence such that () (no loops simple path) such that () ∑ () is minimal, that is:

 () () – the path from to with minimal weight, among all possible paths from to .

Notation:

 () (()) – the weight of the shortest path between and .

 such that () ()

 () viewed as a distance function is a metric function. Meaning:

1. () ()

2. () () ()

3. The triangle inequality: () () () ()

Applications:

 Routing problems: given a set of nodes and latency between them, find a shortest least delayed path to transmit from

one node to another.

 Robot movement: given a set of obstacles in a space and a robot that need to get from one point to another avoiding

the obstacles, find the shortest path for that.

So () is an important matrix.

Variations of the SP problem:

 Single destination shortest path: a whole column in the matrix.

 Single pair shortest path: an entry in the matrix.

 All sources shortest paths: the whole matrix.

Is MST sufficient to compute SPs?

No. for instance, if we have a graph with all edges but the last weighted 1, and the last weighted 2.

The MST is all the 1-weight edges, but the shortest path is the edge () , not ()

 .

Non-uniqueness of shortest paths:

There could be more than one shortest path in a graph.

Some properties:

 Say we have a shortest path , then is the shortest path from

to . This is easily proven by contradiction.

 Given where , are SPs, that doesn’t mean is a

shortest path. However the triangle-IE applies: () () (). The will become iff is on some

shortest path between .

2
CS521 \ lec07 2011-11-08 Ariel Stolerman

Basic operation:

Start with an initial estimate , - that denotes the current value of the shortest path known from a source to all other

 . The reduction of the weight of the edges is called relaxation.

For instance, say we have paths and an edge (). We currently hold , - , - with some estimate values

(even). If the case is , - , - () then we change it to , - , - () – we got a better estimate of

the shortest path. Formally:

 ()

 , - , - ()

 , - , - ()

How many times we need to relax? If we apply relaxation over and over lots of times, we would get shortest paths values in

all fields eventually, but when.

The initial values are set:

 , -

 , -

Bellman-Ford algorithm:

The algorithm is just doing the above, but stating that after | | runs of relaxing all , we get the shortest paths.

After finishing it, we do one more run on all . If , - , - (), it means we have a negative cycle. This

algorithm is () ().

Negative cycles:

Assume we have a path such that there’s a negative cycle between . That means

the more we do cycles in our path, we reduce the weight of the path.

Therefore, if after iterations we don’t have all shortest paths it means the graph contains a negative cycle.

Why times:

Given where is the source. We can’t only have only one relaxation (round of relaxations) since

we don’t know the order of relaxation of the edges. For instance we could relax () () and that’s a

relaxation round that got us only one improvement – the value of is changed.

Therefore, at most are relaxations are needed, and () so at most we would need . Except if there’s a negative

cycle.

Dijkstra’s algorithm

Assumes all edge weights are non-negative.

Initialization:

 Initialization: the same as BF: , - , -

 Use a priority queue, initialized to

3
CS521 \ lec07 2011-11-08 Ariel Stolerman

The top of the is the next node to be taken care of. Every we update all d-values of all adjacent nodes to

the node extracted.

 ()

 * +

 , -

 ()

Note that the only difference between this algorithm and Prim’s MST algorithm is the d-value: at Prim’s it’s the weight of

one edge, here it’s the total weight of the path.

Running time:

Initialization is ; building based on -values is linear. As long as we have values is Q we need to which

costs (if using a min-heap). Updating the d-value for each , -, across all would derives operations, that

w.c. will conclude with a for which means ().

That concludes to (()).

Why the top of holds the :

At the time of of some node , we know that , - (). The reason is that all earlier extract-mins

got all smallest paths, and there is no negative weight that could make any other node down the queue be closer to than

the one extracted now.

Shortest paths in DAG

A directed acyclic graph is a graph with no cycles. These graphs don’t have negative cycles. Using DFS we can apply a

topological sort on the graph, meaning it would take ().

The algorithm:

 Initialize all -values to except

 For each taken in topological order:

o For each , - ()

Running time: (∑ ()) ().

Because there are no cycles, once a -value is set, we know it cannot be changed again.

