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Single Source Shortest Paths 

Shortest path: 

An optimization problem, that given a graph   (   ) and a weight function      , find a path             - a 

sequence such that          (       )    (no loops simple path) such that  ( )  ∑  ( )    is minimal, that is: 

  (   )              ( ) – the path from   to   with minimal weight, among all possible paths from   to  . 

Notation: 

  (   )   (  (   )) – the weight of the shortest path between   and  . 

         such that (   )   (     ) 

 ( ) viewed as a distance function is a metric function. Meaning: 

1.     ( )  (   )    

2.       ( )   (   )   (   ) 

3. The triangle inequality:         ( )  (   )   (   )   (   ) 

Applications: 

 Routing problems: given a set of nodes and latency between them, find a shortest least delayed path to transmit from 

one node to another. 

 Robot movement: given a set of obstacles in a space and a robot that need to get from one point to another avoiding 

the obstacles, find the shortest path for that. 

So  ( ) is an important matrix. 

Variations of the SP problem: 

 Single destination shortest path: a whole column in the matrix. 

 Single pair shortest path: an entry in the matrix. 

 All sources shortest paths: the whole matrix. 

Is MST sufficient to compute SPs? 

No. for instance, if we have a graph                with all edges but the last weighted 1, and the last weighted 2. 

The MST is all the 1-weight edges, but the shortest path         is the edge  (       )   , not  (         )  

  . 

Non-uniqueness of shortest paths: 

There could be more than one shortest path in a graph. 

Some properties: 

 Say we have a shortest path                     , then         is the shortest path from    

to   . This is easily proven by contradiction. 

 Given              where        ,         are SPs, that doesn’t mean         is a 

shortest path. However the triangle-IE applies:  (     )   (     )   (     ). The   will become   iff    is on some 

shortest path between      . 
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Basic operation: 

Start with an initial estimate  , - that denotes the current value of the shortest path known from a source   to all other 

   . The reduction of the weight of the edges is called relaxation. 

For instance, say we have paths         and an edge (   ). We currently hold  , -  , - with some estimate values 

(even  ). If the case is  , -   , -   (   ) then we change it to  , -   , -   (   ) – we got a better estimate of 

the shortest path. Formally: 

     (     )  

        , -   , -   (   )      

         , -   , -   (   ) 

    

How many times we need to relax? If we apply relaxation over and over lots of times, we would get shortest paths values in 

all   fields eventually, but when. 

The initial values are set: 

  , -    

  , -         

Bellman-Ford algorithm: 

The algorithm is just doing the above, but stating that after   | | runs of relaxing all    , we get the shortest paths. 

After finishing it, we do one more run on all    . If  , -   , -   (   ), it means we have a negative cycle. This 

algorithm is  (  )   (  ). 

Negative cycles: 

Assume we have a path                   such that there’s a negative cycle between      . That means 

the more we do cycles in our path, we reduce the weight of the path. 

Therefore, if after   iterations we don’t have all shortest paths it means the graph contains a negative cycle. 

Why   times: 

Given               where    is the source. We can’t only have only one relaxation (round of relaxations) since 

we don’t know the order of relaxation of the edges. For instance we could relax (       )   (     ) and that’s a 

relaxation round that got us only one improvement – the value of    is changed. 

Therefore, at most   are relaxations are needed, and    (  ) so at most we would need  . Except if there’s a negative 

cycle. 

Dijkstra’s algorithm 

Assumes all edge weights are non-negative. 

Initialization: 

 Initialization: the same as BF:  , -     , -          

 Use a priority queue, initialized to     
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The top of the   is the next node to be taken care of. Every             we update all d-values of all adjacent nodes to 

the node extracted. 

             ( ) 

    * + 

              , -  

      (     ) 

Note that the only difference between this algorithm and Prim’s MST algorithm is the d-value: at Prim’s it’s the weight of 

one edge, here it’s the total weight of the path. 

Running time: 

Initialization is  ; building   based on  -values is linear. As long as we have values is Q we need to             which 

costs     (if using a min-heap). Updating the d-value for each      , -, across all   would derives   operations, that 

w.c. will conclude with a              for   which means  (   ). 

That concludes to  ((   )    ). 

Why the top of   holds the  : 

At the time of             of some node    , we know that  , -   (   ). The reason is that all earlier extract-mins 

got all smallest paths, and there is no negative weight that could make any other node down the queue be closer to   than 

the one extracted now. 

Shortest paths in DAG 

A directed acyclic graph is a graph with no cycles. These graphs don’t have negative cycles. Using DFS we can apply a 

topological sort on the graph, meaning it would take  (   ). 

The algorithm: 

 Initialize all  -values to   except   

 For each     taken in topological order: 

o For each      , -      (     ) 

Running time:  (    ∑    ( )   )   (   ). 

Because there are no cycles, once a  -value is set, we know it cannot be changed again. 

 


