
1 
CS521 \ lec02 2011-09-27  Ariel Stolerman 

Recurrences – Contd. 
Merge Sort problem: 

Given             , we would like to sort them to a new sequence:    
    

      
   

The algorithm is a divide and conquer algorithm: 

 divide the problem into 2 subprobelms half the size:         |  |  |  |  
| |

 
 

 Solve the sub problems recursively. 

 Merge the results back up. 

 
The merge function is simple: 

 Look at the two sorted lists, each time advancing with the one with the smallest value at top. 

 Stop when got to the end of the two lists. 

The recurrence of the Merge-Sort algorithm is: 

Substitution method: 
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Note: The reason log bases don’t matter is:      
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Recursion Tree method: 

Level 0:   -        
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Until the bottom of the tree which has 
 

 
 pairs. 

The total work is   (                       )        

 

Generalized Form: 
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The recursion tree would look like: 

Level 0:  ( ). Cost to go out:  ( ) 

Level 1:   problems of size  (
 

 
). To go up would cost:  ( ) 

Level 2:    problems of size  (
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The last level has    problems, each of size 
 

  . To go up you pay:      (
 

    ) 

At the last layer each operation is trivial, as there are   nodes with  ( ) work. 

The depth of the tree is      because each layer you divide the problem into problems of size divided by  . After      

steps you get to a problem of size 1. 

To go from the bottom layer back up, costs:     ( ) where                

When     the cost to come up from one level to the one above it is  . 

But, if for instance         the work per level would be         (!) so if     you number of nodes is greater than 

linear, and the problem is broken down to sub-problems inefficiently. 

The work is done only when you get to the trivial case and fold the tree back up: 
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The bound of the sum is        because we don’t care about the bottom level (that’s already calculated by       

 ( )       ). 

The sum is actually measuring the area of the triangle that is formed from expanding the recursion tree. 

 

In the case of merge-sort: 

The triangle is: 

 

 

 

 

 

Binary search:  ( )   (
 

 
)    

Linear search:  ( )   (   )    

 

What about the sum of tree for  ( )    (
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Note that the work at the bottom level (the trivial level) is    and that’s the same work you pay going up – the triangle costs 

also    (minus  ). 

For  ( )   (
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So there are three cases: 

    : a triangle 

    : all work is at the bottom of the tree 

    : all work is at the beginning of the tree 

And that’s the Master Theorem. 
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Master Theorem: 

Given recurrence  ( )  ,
 ( )    

  (
 

 
)   ( )      

We’ll define the following for the 3 instances: 

 The work at the bottom of the tree is:  ( )        – number of the leaves of the tree. 

 The work of the triangle is: ∑    (
 

  )
    
    

The cases: 

1) If  ( )   (       )    , that is  ( ) is polynomially smaller than      . Thus:  ( )   (     )  

2) If  ( )   (     ), that is  ( ) is equivalent to      . That’s the cost of the bottom times the height of the triangle. 

Thus  ( )   (     )  

3) If  ( )   (       )    , and        (
 

 
)     ( ) (   ), that is  ( ) is polynomially larger than      . 

Thus  ( )   ( ( ))  

 

Example for (2):  ( )    (
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Example for (3):  ( )    (
 

 
)    √   ( )        √   ( )   √   ( )   ( √ ) 

Note: (1) and (2) are   for some relation between   and  . 

 

Back to Algorithms: 
Quick Sort: 

After every partition you have a pivot that you know all the left side of it is less than the pivot, and the right – bigger than 

the pivot. That means that every step you “earn” 1 bit of information. 

The recurrence for quick sort is: 

 ( )   ( )   (   )   ( ) 

 The  ( ) at the level is for the partition of the array into one side    and the other side    (  is the pivot). 

 The partition would be into   array and     array that are sorted recursively. 

The case of       
 

 
 is good, but the worst case can be insertion sort:  ( )   ( )   (   )   , that would end 

up being  ( )   (  ). 

And the case of   
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This is preferable over merge-sort since it sorts in place, unlike merge sort. The space complexity of quick sort is better than 

that of merge sort. 

How about  ( )   (
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)   ( ) – the work tree will be unbalanced and the deepest side would be      . that’s 

why the order of growth is still  (    ): 

 Level 0:   

 Level 1: 
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 Level 3: ……… the last one: (
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So the total work is:  ( )   (
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As long as you put a portion of the total on one side and another on the other side, you stay in  (    ), i.e. stay in 

logarithmic depth tree. In general: 
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Same logic apply for binary-search-like vriations:  ( )   (
  

   
 )   ( )   (   ), with the base of the log being almost 

1 in this case:      

  

 . 

 

So back to quick sort: 

The worst case scenario for quick sort is if the array is already sorted. 

Every level you partition right at the beginning, and that’s  ( )   (   )   ( )   (  ). 

Another case as bad is this is when every pivot is a few (constant) places away from its position, you get also  ( )  

 (   )   ( )   (  ). 

Experimentally, the worst cases will not happen often. The general form is: for partition (       ), the formula is 

 ( )   ( )   (     )   ( ). 

You have many possibilities and you’re interested in the expected running time, which will be a weighted sum of running 

times: 
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So the expected running time is the sum of products of event probability with the event’s running time: 

 ( )  ∑   [(       )      ]   ( |(       )      )   The probability for each event is 
 

 
 

        The cost for event k is  ( )   (     )   ( ) 
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(*) The sum is: 
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  There are 2 copies of all  ( )|   
    

 

The above concludes to that the average running time of quick sort is  (    ). 

Proof: 
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Heaps, Priority Queues and Heap Sort 
Priority Queue: 

Priority queue is designed to allow extraction of elements with highest priority. A queue is a kind of priority queue, where 

the priority is time of arrival. 

This is a dynamic data structure, so it should handle insertions and removals efficiently. If you maintain a sorted data, the 

extraction is constant – get the top. But, the insertion costs more. Generally, there’s a tradeoff between insertion and 

removal times. If you don’t know the frequency of each operation type, you want to optimize both – binary heap. 

Binary Heap: 

 Initialize: initialize the structure. 

 Insert(key): insert a new key. 

 Remove Max: remove the largest key. 

The heap is defined as a data structure that supports the above operations, and satisfies: 

 Binary tree 

 At every node: 

o Partial order:    (     )     (      ) 

o Left-filled levels: the last level is left filled, the levels above are full. 

That means that: 

 At every node, that node is the largest from the tree of which that node is its root. 

 You don’t know anything of the relation between any left child and right child. Otherwise that’s a binary search 

tree. 

The relationship above is called heap-order. 

The left-filling character means you can put the elements physically in an array, so for any node  : 

 Left child sits at    

 Right child sits at      

 Parent =         

The height of the heap is     so any operation takes     time:  ( )      . 

 


