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Recurrences – Contd. 
Merge Sort problem: 

Given             , we would like to sort them to a new sequence:    
    

      
   

The algorithm is a divide and conquer algorithm: 

 divide the problem into 2 subprobelms half the size:         |  |  |  |  
| |

 
 

 Solve the sub problems recursively. 

 Merge the results back up. 

 
The merge function is simple: 

 Look at the two sorted lists, each time advancing with the one with the smallest value at top. 

 Stop when got to the end of the two lists. 

The recurrence of the Merge-Sort algorithm is: 

Substitution method: 
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Note: The reason log bases don’t matter is:      
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Recursion Tree method: 
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Until the bottom of the tree which has 
 

 
 pairs. 

The total work is   (                       )        

 

Generalized Form: 

 ( )    (
 

 
)   ( )  

The recursion tree would look like: 

Level 0:  ( ). Cost to go out:  ( ) 

Level 1:   problems of size  (
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The last level has    problems, each of size 
 

  . To go up you pay:      (
 

    ) 

At the last layer each operation is trivial, as there are   nodes with  ( ) work. 

The depth of the tree is      because each layer you divide the problem into problems of size divided by  . After      

steps you get to a problem of size 1. 

To go from the bottom layer back up, costs:     ( ) where                

When     the cost to come up from one level to the one above it is  . 

But, if for instance         the work per level would be         (!) so if     you number of nodes is greater than 

linear, and the problem is broken down to sub-problems inefficiently. 

The work is done only when you get to the trivial case and fold the tree back up: 
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The bound of the sum is        because we don’t care about the bottom level (that’s already calculated by       

 ( )       ). 

The sum is actually measuring the area of the triangle that is formed from expanding the recursion tree. 

 

In the case of merge-sort: 

The triangle is: 

 

 

 

 

 

Binary search:  ( )   (
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Linear search:  ( )   (   )    

 

What about the sum of tree for  ( )    (
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Note that the work at the bottom level (the trivial level) is    and that’s the same work you pay going up – the triangle costs 

also    (minus  ). 
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So there are three cases: 

    : a triangle 

    : all work is at the bottom of the tree 

    : all work is at the beginning of the tree 

And that’s the Master Theorem. 
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Master Theorem: 

Given recurrence  ( )  ,
 ( )    

  (
 

 
)   ( )      

We’ll define the following for the 3 instances: 

 The work at the bottom of the tree is:  ( )        – number of the leaves of the tree. 

 The work of the triangle is: ∑    (
 

  )
    
    

The cases: 

1) If  ( )   (       )    , that is  ( ) is polynomially smaller than      . Thus:  ( )   (     )  

2) If  ( )   (     ), that is  ( ) is equivalent to      . That’s the cost of the bottom times the height of the triangle. 

Thus  ( )   (     )  

3) If  ( )   (       )    , and        (
 

 
)     ( ) (   ), that is  ( ) is polynomially larger than      . 

Thus  ( )   ( ( ))  

 

Example for (2):  ( )    (
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Example for (3):  ( )    (
 

 
)    √   ( )        √   ( )   √   ( )   ( √ ) 

Note: (1) and (2) are   for some relation between   and  . 

 

Back to Algorithms: 
Quick Sort: 

After every partition you have a pivot that you know all the left side of it is less than the pivot, and the right – bigger than 

the pivot. That means that every step you “earn” 1 bit of information. 

The recurrence for quick sort is: 

 ( )   ( )   (   )   ( ) 

 The  ( ) at the level is for the partition of the array into one side    and the other side    (  is the pivot). 

 The partition would be into   array and     array that are sorted recursively. 

The case of       
 

 
 is good, but the worst case can be insertion sort:  ( )   ( )   (   )   , that would end 

up being  ( )   (  ). 

And the case of   
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This is preferable over merge-sort since it sorts in place, unlike merge sort. The space complexity of quick sort is better than 

that of merge sort. 

How about  ( )   (
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)   ( ) – the work tree will be unbalanced and the deepest side would be      . that’s 

why the order of growth is still  (    ): 
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So the total work is:  ( )   (
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As long as you put a portion of the total on one side and another on the other side, you stay in  (    ), i.e. stay in 

logarithmic depth tree. In general: 

 ( )   (
 

 
)   (

   

 
 )   ( )      ( )   (    )  

 

Same logic apply for binary-search-like vriations:  ( )   (
  

   
 )   ( )   (   ), with the base of the log being almost 

1 in this case:      

  

 . 

 

So back to quick sort: 

The worst case scenario for quick sort is if the array is already sorted. 

Every level you partition right at the beginning, and that’s  ( )   (   )   ( )   (  ). 

Another case as bad is this is when every pivot is a few (constant) places away from its position, you get also  ( )  

 (   )   ( )   (  ). 

Experimentally, the worst cases will not happen often. The general form is: for partition (       ), the formula is 

 ( )   ( )   (     )   ( ). 

You have many possibilities and you’re interested in the expected running time, which will be a weighted sum of running 

times: 
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So the expected running time is the sum of products of event probability with the event’s running time: 

 ( )  ∑   [(       )      ]   ( |(       )      )   The probability for each event is 
 

 
 

        The cost for event k is  ( )   (     )   ( ) 
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(*) The sum is: 
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  There are 2 copies of all  ( )|   
    

 

The above concludes to that the average running time of quick sort is  (    ). 

Proof: 
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Heaps, Priority Queues and Heap Sort 
Priority Queue: 

Priority queue is designed to allow extraction of elements with highest priority. A queue is a kind of priority queue, where 

the priority is time of arrival. 

This is a dynamic data structure, so it should handle insertions and removals efficiently. If you maintain a sorted data, the 

extraction is constant – get the top. But, the insertion costs more. Generally, there’s a tradeoff between insertion and 

removal times. If you don’t know the frequency of each operation type, you want to optimize both – binary heap. 

Binary Heap: 

 Initialize: initialize the structure. 

 Insert(key): insert a new key. 

 Remove Max: remove the largest key. 

The heap is defined as a data structure that supports the above operations, and satisfies: 

 Binary tree 

 At every node: 

o Partial order:    (     )     (      ) 

o Left-filled levels: the last level is left filled, the levels above are full. 

That means that: 

 At every node, that node is the largest from the tree of which that node is its root. 

 You don’t know anything of the relation between any left child and right child. Otherwise that’s a binary search 

tree. 

The relationship above is called heap-order. 

The left-filling character means you can put the elements physically in an array, so for any node  : 

 Left child sits at    

 Right child sits at      

 Parent =         

The height of the heap is     so any operation takes     time:  ( )      . 

 


