Recurrences - Contd.

Merge Sort problem:

Given $< a_1, a_2, ..., a_n >$, we would like to sort them to a new sequence: $< a_1' \le a_2' \le \cdots \le a_n' >$

The algorithm is a **divide and conquer** algorithm:

- divide the problem into 2 subprobelms half the size: $S \to S_1, S_2, |S_1| \cong |S_2| \cong \frac{|S|}{2}$
- Solve the sub problems recursively.
- Merge the results back up.

The merge function is simple:

- Look at the two sorted lists, each time advancing with the one with the smallest value at top.
- Stop when got to the end of the two lists.

The recurrence of the Merge-Sort algorithm is:

Substitution method:

$$T(n) = 2T\left(\frac{n}{2}\right) + n = 2\left[2T\left(\frac{n}{4}\right) + \frac{n}{2}\right] + n = 2^2T\left(\frac{n}{2^2}\right) + 2n = \dots = 2^kT\left(\frac{n}{2^k}\right) + kn = \frac{n}{2^k} = 1 \Rightarrow k = \lg n$$

$$= \Theta(n \cdot \lg n)$$

Note: The reason log bases don't matter is: $\lg_b n = \frac{\lg_c n}{\lg_c b} = \frac{1}{\lg_c b} \cdot \lg_c n \Rightarrow \lg_b n = \Theta(\lg_c n)$

Recursion Tree method:

Level 0: n - cost = n

Level 1:
$$T\left(\frac{n}{2}\right)$$
, $T\left(\frac{n}{2}\right)$, $cost = n$

Level 2:
$$T\left(\frac{n}{4}\right)$$
, $T\left(\frac{n}{4}\right)$, $T\left(\frac{n}{4}\right)$, $T\left(\frac{n}{4}\right)$, $cost = n$

...

Until the bottom of the tree which has $\frac{n}{2}$ pairs.

The **total work** is $n \times (depth \ of \ recursion \ tree) = c \cdot \lg n$

Generalized Form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

The recursion tree would look like:

Level 0: T(n). Cost to go out: f(n)

Level 1: a problems of size $T\left(\frac{n}{b}\right)$. To go up would cost: f(n)

Level 2: a^2 problems of size $T\left(\frac{n}{h^2}\right)$. To go up would cost: $a \cdot f\left(\frac{n}{h}\right)$

Level 3: a^3 problems of size $T\left(\frac{n}{h^3}\right)$. To go up would cost $a^2f\left(\frac{n}{h^2}\right)$ [this level costs $a^3f\left(\frac{n}{h^3}\right)$

CS521 \ lec02 2011-09-27 Ariel Stolerman

The last level has a^k problems, each of size $\frac{n}{h^k}$. To go up you pay: $a^{k-1}f\left(\frac{n}{h^{k-1}}\right)$

At the **last** layer each operation is trivial, as there are n nodes with $\Theta(1)$ work.

The depth of the tree is $g_b n$ because each layer you divide the problem into problems of size divided by b. After $g_b n$ steps you get to a problem of size 1.

To go from the bottom layer back up, costs: $a^l \cdot f(1)$ where $a^l = a^{\lg_b n} = n^{\lg_b a}$

When a = b the cost to come up from one level to the one above it is n.

But, if for instance a=4, b=2 the work per level would be $n^{\lg 4}=n^2$ (!) so if $a\geq b$ you number of nodes is greater than linear, and the problem is broken down to sub-problems inefficiently.

The work is done only when you get to the trivial case and fold the tree back up:

$$T(n) = n^{\lg_b a} + \sum_{k=0}^{(\lg_b n) - 1} a^k \cdot f\left(\frac{n}{b^k}\right)$$

The bound of the sum is $\lg_b n - 1$ because we don't care about the bottom level (that's already calculated by $n^{\lg_b a} \cdot T(1) = n^{\lg_b a}$).

The sum is actually measuring the area of the triangle that is formed from expanding the recursion tree.

In the case of merge-sort:

The triangle is:

Binary search: $T(n) = T\left(\frac{n}{2}\right) + 1$ Linear search: T(n) = T(n-1) + 1

What about the sum of tree for $T(n) = 4T(\frac{n}{2}) + n$:

$$T(n) = n^{2} + 4^{0} \cdot \frac{n}{2^{0}} + 4^{1} \cdot \frac{n}{2^{1}} + 4^{2} \cdot \frac{n}{2^{2}} + \dots + 4^{\lg n - 1} \cdot \frac{n}{2^{\lg n}} = n^{2} + n \left(1 + 2 + 2^{2} + 2^{3} + \dots + 2^{\lg n} \right) = n^{2} + n \cdot (n - 1) = 2n^{2} - n = \left[\Theta(n^{2}) \right]$$

Note that the work at the bottom level (the trivial level) is n^2 and that's the same work you pay going up – the triangle costs also n^2 (minus n).

$$\text{For } T(n) = T\left(\frac{n}{2}\right) + n^2 = T\left(\frac{n}{4}\right) + \frac{n^2}{2^2} + n^2 = \dots = T\left(\frac{n}{2^k}\right) + \left(\frac{n}{2^k}\right)^2 + \dots + n^2 = T\left(\frac{n}{2^k}\right) + n^2\sum_{k=0}^{\lg n-1}\left(\frac{1}{2^k}\right)^2 = c \cdot n^2$$

So there are three cases:

- a = b: a triangle
- a > b: all work is at the bottom of the tree
- b > a: all work is at the beginning of the tree

And that's the Master Theorem.

CS521 \ lec02 2011-09-27 Ariel Stolerman

Master Theorem:

Given recurrence
$$T(n) = \begin{cases} \Theta(1), & n = 1 \\ aT\left(\frac{n}{b}\right) + f(n), & n = b^k \end{cases}$$

We'll define the following for the 3 instances:

- The work at the bottom of the tree is: $Q(n) \coloneqq n^{\lg_b a}$ number of the leaves of the tree.
- The work of the triangle is: $\sum_{k=0}^{\lg_b n} a^k f\left(\frac{n}{k^k}\right)$

The cases:

- 1) If $f(n) = O(n^{\lg_b a \epsilon})$, $\epsilon > 0$, that is f(n) is **polynomially smaller than** $n^{\lg_b a}$. Thus: $T(n) = O(n^{\lg_b a})$
- 2) If $f(n) = \Theta(n^{\lg_b a})$, that is f(n) is equivalent to $n^{\lg_b a}$. That's the cost of the bottom times the height of the triangle. Thus $T(n) = O(n^{\lg_b a})$
- 3) If $f(n) = \Omega(n^{\lg_b a + \epsilon})$, $\epsilon > 0$, and $n \ge b \Rightarrow a \cdot f\left(\frac{n}{b}\right) \le c \cdot f(n)$ ($c \ge 0$), that is f(n) is polynomially larger than $n^{\lg_b a}$. Thus $T(n) = \Theta(f(n))$

Example for (2):
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2 \Rightarrow T(n) = O(n^2 \lg n)$$

Example for (3):
$$T(n) = 2T\left(\frac{n}{4}\right) + n^2\sqrt{n} \Rightarrow Q(n) = n^{\lg_4 2} = \sqrt{n}, f(n) = n\sqrt{n} \Rightarrow T(n) = \Theta\left(n\sqrt{n}\right)$$

Note: (1) and (2) are Θ for some relation between a and b.

Back to Algorithms:

Quick Sort:

After every partition you have a pivot that you know all the left side of it is less than the pivot, and the right – bigger than the pivot. That means that every step you "earn" 1 bit of information.

The recurrence for quick sort is:

$$T(n) = T(q) + T(n - q) + \Theta(n)$$

- The $\Theta(n)$ at the level is for the partition of the array into one side $\leq x$ and the other side > x (x is the pivot).
- The partition would be into q array and n-q array that are sorted recursively.

The case of $q = n - q = \frac{n}{2}$ is good, but the worst case can be insertion sort: T(n) = T(1) + T(n-1) + n, that would end up being $T(n) = \Theta(n^2)$.

And the case of $k = \frac{n}{2}$, $n - k = \frac{n}{2}$:

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n \lg n)$$

This is preferable over merge-sort since it sorts in place, unlike merge sort. The space complexity of quick sort is better than that of merge sort.

How about $T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + \Theta(n)$ – the work tree will be **unbalanced** and the deepest side would be $\lg_{10} n$. that's why the order of growth is still $\Theta(n \lg n)$:

- Level 0: n
- Level 1: $\frac{n}{10}$, $\frac{9n}{10}$ Level 2: $\frac{n}{100}$, $\frac{9n}{100}$, $\frac{9n}{100}$, $\frac{9^2}{100}$
- Level 3: the last one: $\left(\frac{9}{10}\right)^3 n$

And the last level would have $\left(\frac{9}{10}\right)^k n = 10 \Rightarrow k = \lg_{\frac{10}{\alpha}} n = \lg_c n$, $c > 1 \Rightarrow$ that's $\Theta(\lg n)$

CS521 \ lec02 2011-09-27 Ariel Stolerman

So the total work is: $T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + \Theta(n) = O(n \lg n)$

As long as you put a portion of the total on one side and another on the other side, you stay in $O(n \lg n)$, i.e. stay in logarithmic depth tree. In general:

$$T(n) = T\left(\frac{n}{\alpha}\right) + T\left(\frac{\alpha - 1}{\alpha}n\right) + \Theta(n), \alpha \ge 2 \Rightarrow T(n) = O(n \lg n)$$

Same logic apply for binary-search-like vriations: $T(n) = T\left(\frac{99}{100}n\right) + \Theta(1) = \Theta(\lg n)$, with the base of the log being almost 1 in this case: $\lg_{\frac{100}{100}}n$.

So back to quick sort:

The worst case scenario for quick sort is if the array is already sorted.

Every level you partition right at the beginning, and that's $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$.

Another case as bad is this is when every pivot is a few (constant) places away from its position, you get also $T(n) = T(n-c) + \Theta(n) = \Theta(n^2)$.

Experimentally, the worst cases will not happen often. The general form is: for partition (k, n - k - 1), the formula is $T(n) = T(k) + T(n - k - 1) + \Theta(n)$.

You have many possibilities and you're interested in the **expected** running time, which will be a weighted sum of running times:

$$Exp. = \sum_{i=1}^{N} E_i \times \Pr(E_i)$$

So the expected running time is the sum of products of event probability with the event's running time:

$$T(n) = \sum_{k} \Pr[(k, n-k-1) \ split] \cdot T(n|(k, n-k-1) \ split) =$$
 The probability for each event is $\frac{1}{n}$

The cost for event k is $T(k) + T(n - k - 1) + \Theta(n)$

$$\frac{1}{n}\sum_{k}[T(k)+T(n-k-1)+\Theta(n)]=$$
 The transition is explained in (*)

$$\frac{2}{n}\sum_{k=1}^{n-1}[T(k)+\Theta(n)]$$

(*) The sum is:

$$T(1) + T(n-2) + \Theta(n)$$

$$T(2) + T(n-3) +$$
"

...

$$T(n-3) + T(2) +$$
"

$$T(n-2) + T(1) +$$
"

 \Rightarrow There are 2 copies of all $T(k)|_{k=1}^{n-1}$

The above concludes to that the average running time of quick sort is $\Theta(n \lg n)$.

<u>Proof</u>

$$T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \le \frac{2}{n} \sum_{k=1}^{n-1} [ak \lg k + b + \Theta(n)] = \frac{2a}{n} \left[\sum_{k=1}^{n-1} k \lg k \right] + \frac{2}{n} nb + \Theta(n) \le (*)$$

$$\left[\sum_{k=1}^{n-1} k \lg k = \sum_{k=1}^{\left|\frac{n}{2}-1\right|} k \lg k + \sum_{\left|\frac{n}{2}\right|}^{n-1} k \lg k \le 2 \lg n \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\left|\frac{n}{2}-1\right|} k\right) \le \lg n \cdot \frac{n(n-1)}{2} - \frac{\frac{n(n-1)}{2} - \frac{n(n-1)}{2}}{2} \le \frac{1}{2} n^2 \lg n - \frac{n^2}{8}\right]$$

$$(*) \le \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{n^2}{8}\right) + 2b + \Theta(n) = an \lg n + b + \left(\Theta(n) + b - \frac{an}{4}\right)$$

CS521 \ lec02 2011-09-27 Ariel Stolerman

Heaps, Priority Queues and Heap Sort

Priority Queue:

Priority queue is designed to allow extraction of elements with highest priority. A queue is a kind of priority queue, where the priority is time of arrival.

This is a dynamic data structure, so it should handle insertions and removals efficiently. If you maintain a sorted data, the extraction is constant – get the top. But, the insertion costs more. Generally, there's a tradeoff between insertion and removal times. If you don't know the frequency of each operation type, you want to optimize both – binary heap.

Binary Heap:

- Initialize: initialize the structure.
- <u>Insert(key)</u>: insert a new key.
- Remove Max: remove the largest key.

The heap is defined as a data structure that supports the above operations, and satisfies:

- Binary tree
- At every node:
 - o Partial order: key(child) < key(parent)
 - o Left-filled levels: the last level is left filled, the levels above are full.

That means that:

- At every node, that node is the largest from the tree of which that node is its root.
- You don't know anything of the relation between any left child and right child. Otherwise that's a **binary search tree**

The relationship above is called **heap-order**.

The left-filling character means you can put the elements physically in an array, so for any node i:

- Left child sits at 2i
- Right child sits at 2i + 1
- Parent = $i \, div \, 2$

The height of the heap is $\lg n$ so any operation takes $\lg n$ time: $H(n) = \lg_2 n$.