CS521\ lec02 2011-09-27 Ariel Stolerman

Recurrences — Contd.

Merge Sort problem:

Given < a4, ay, ..., a, >, we would like to sort them to a new sequence: < a; < aj; < - < ay >
The algorithm is a divide and conquer algorithm:

e divide the problem into 2 subprobelms half the size: § = S, S,, |S;| = |S,| = %

e Solve the sub problems recursively.
e Merge the results back up.

Size n S

Size n/2 51 Sz Size n/2

/

The merge function is simple:
e Look at the two sorted lists, each time advancing with the one with the smallest value at top.
e Stop when got to the end of the two lists.

The recurrence of the Merge-Sort algorithm is:

Substitution method:

n ny n n n
= —_ = —_ —_ = 2 —_—] k —_— =]gn .
T(n) = 2T (2) +n=2[2r (4) + 2] +n=2 T(ZZ) +2n 2T (zk) +kn P 28"T(1) +n-lgn
=0(n-lgn)
Note: The reason log bases don’t matter is: Ig, n = i':: = lglb ‘lg.n=l1gyn=0(0g.n)
¢ consctant

Recursion Tree method:

Level 0: n-cost =n

Level 1: T (g), T (g), cost=n
Level 2: T G) , T (%),T G),T (%), cost =n

Until the bottom of the tree which has 2 pairs.

The total work is n X (depth of recursion tree) = c-lgn

Generalized Form:

n
T(n) =aT (E) + f(n)
The recursion tree would look like:
Level O: T(n). Cost to go out: f(n)

Level 1: a problems of size T (g) To go up would cost: f(n)

Level 2: a? problems of size T (:—2) To go up would cost: a - f (g)
Level 3: a® problems of size T (;—3) To go up would cost a?f (bﬁz) [this level costs a3 f (b%)

CS521 \ lec02 2011-09-27 Ariel Stolerman

The last level has a* problems, each of size :—k. To go up you pay: a1 f (b:_l)

At the last layer each operation is trivial, as there are n nodes with ®(1) work.

The depth of the tree is because each layer you divide the problem into problems of size divided by b. AfterIg, n
steps you get to a problem of size 1.

To go from the bottom layer back up, costs: a' - f(1) where a'! = a'8»™ = nl8v @

When a = b the cost to come up from one level to the one above it is n.

But, if for instance a = 4, b = 2 the work per level would be n'8* = n? (1) so if a > b you number of nodes is greater than
linear, and the problem is broken down to sub-problems inefficiently.

The work is done only when you get to the trivial case and fold the tree back up:

(gp n)-1
n
T(n) =n'8r e + Z ak f(b—k)
k=0

The bound of the sum is 1g, n — 1 because we don’t care about the bottom level (that’s already calculated by n'8» @ -
T(1) = n'8r9),
The sum is actually measuring the area of the triangle that is formed from expanding the recursion tree.

In the case of merge-sort:
The triangle is:

Binary search:T(n) =T (g) +1
Linearsearch: T(n) =T(n—1)+1

What about the sum of tree for T(n) = 4T (g) +n:
T(n) = n? +4°-%+41-%+42 -%+«~+41g”‘1-21%:n2 +n(1+2+22 +23+~-+23") =n’+n-(n—1)=
=2n>—-n=
Note that the work at the bottom level (the trivial level) is n? and that’s the same work you pay going up — the triangle costs
also n? (minus n).
For 7o) =T (3) # 0 =T (3) # St = =T () () + o407 () 42 () = e’
So there are three cases:
e a = b:atriangle
e a > b:all work is at the bottom of the tree
e b > a:all workis at the beginning of the tree

And that’s the Master Theorem.

CS521\ lec02 2011-09-27 Ariel Stolerman

Master Theorem:

0(1), n=1
aT (g) + f(n),n = b¥
We’ll define the following for the 3 instances:

Given recurrence T(n) = {

e The work at the bottom of the tree is: Q(n) := n'8 % — number of the leaves of the tree.
e The work of the triangle is: Z}{gfon akf (;—k)
The cases:
1) If f(n) = 0(n'® =€), > 0, that is f (n) is polynomially smaller than n'8»¢. Thus: |T(n) = 0(n'er @)
2) Iff(n) = ®(nlgb a), that is £ (n) is equivalent to n'8» ¢, That’s the cost of the bottom times the height of the triangle.
Thus|T(n) = O(nlgb “)

3) Iff(n) =Q(n'8%*€),e>0,andn=>b=>a-f (%) < c- f(n) (c = 0), thatis f(n) is polynomially larger than n'g> ¢,

Thus |T(n) = G)(f(n))|

Example for (2): T(n) = 4T (g) +n?=>T(n) =0mn?lgn)
Example for (3): T(n) = 2T G) +n2n=Qn) =n'82 =yn,f(n) =nvn=Tn) = 0(nVn)

Note: (1) and (2) are © for some relation between a and b.

Back to Algorithms:

Quick Sort:

After every partition you have a pivot that you know all the left side of it is less than the pivot, and the right — bigger than
the pivot. That means that every step you “earn” 1 bit of information.

The recurrence for quick sort is:

T(n)=T(q@)+Tm—q)+06Mm)

e The ©(n) at the level is for the partition of the array into one side < x and the other side > x (x is the pivot).

e The partition would be into q array and n — q array that are sorted recursively.

Thecaseofq=n—q = %is good, but the worst case can be insertion sort: T(n) = T(1) + T(n — 1) + n, that would end
up being T(n) = 0(n?).

And the case of k = g,n —k= 12—1:
T(n) =2T (g) +0(n) =0(nlgn)

This is preferable over merge-sort since it sorts in place, unlike merge sort. The space complexity of quick sort is better than
that of merge sort.

How aboutT(n) =T (:—0) +T (j—z) + 0(n) —the work tree will be unbalanced and the deepest side would be Ig;, n. that’s
why the order of growth is still @(nlgn):
e levelO:n

n 9an
e levell:—,—

10’10

n 9n an 92
e level2:—,—, —,—n

100’100 100’ 100

9 3

e level3: ... the last one: (1—0) n

k
And the last level would have (1—90) n=10=>k =l1gwon =1g.n,c > 1 = that's 0(Ign)
9

CS521\ lec02 2011-09-27 Ariel Stolerman

. 9
So the total work is: T(n) =T (%) +T (ﬁ) +0(m) =0(nlgn)
As long as you put a portion of the total on one side and another on the other side, you stay in O(nlgn), i.e. stay in
logarithmic depth tree. In general:

T(n) =T(n)+T(

a

a —

1n> +0(n),a=2=Tn) =0(nlgn)

Same logic apply for binary-search-like vriations: T(n) = T (% n) + 0(1) = 6(Ign), with the base of the log being almost

1in this case: lg1o0 1.
99

So back to quick sort:

The worst case scenario for quick sort is if the array is already sorted.
Every level you partition right at the beginning, and that’'s T(n) = T(n — 1) + 0(n) = 0(n?).
Another case as bad is this is when every pivot is a few (constant) places away from its position, you get also T(n) =
T(n—c)+0(n) = 0(n?.
Experimentally, the worst cases will not happen often. The general form is: for partition (k,n — k — 1), the formula is
Tn)=Tk)+Tn—k—1)+ 0(n).
You have many possibilities and you’re interested in the expected running time, which will be a weighted sum of running
times:

Exp.=) E; X Pr(E;)

i=1

So the expected running time is the sum of products of event probability with the event’s running time:

N

T(n) = Xy Pr[(k,n — k — 1) split] - T(n|(k,n — k — 1) split) = The probability for each event is%
The cost foreventkisT(k) + T(n —k — 1) + 0(n)
%Zk[T(k) +T(n—k—-1)+00n)] = The transition is explained in (*)
2 n—-1
N GERIO!
k=1

(*) The sum is:
TA)+Tn-2)+0(n)
TR)+Tn-3)+"

T(n—3) +T(2) +"
T(n—2) +T(1) +"
= There are 2 copies of all T (k)|}Z1

The above concludes to that the average running time of quick sort is ©(n lgn).
Proof:

T(n) = Z¥RCiT(k) + 0() < = ¥pcilaklgh + b +0(m)] = 2 [Lptklgk|+2nb + 0(n) < (¥)

n
[3-1]

[zz;}klgk =Yz Tkigk + zrg]lklgk < 21gn<z;;;}k - Zk7=_11]k> < 1gn-@—?(71) <ip2ign-m
2

<2l 2] : +2b+0 1 +b+(® +b an)
<22 _n = _=
(x) < Sn'lgn - (n) = anlgn (n))

CS521\ lec02 2011-09-27 Ariel Stolerman

Heaps, Priority Queues and Heap Sort
Priority Queue:
Priority queue is designed to allow extraction of elements with highest priority. A queue is a kind of priority queue, where
the priority is time of arrival.
This is a dynamic data structure, so it should handle insertions and removals efficiently. If you maintain a sorted data, the
extraction is constant — get the top. But, the insertion costs more. Generally, there’s a tradeoff between insertion and
removal times. If you don’t know the frequency of each operation type, you want to optimize both — binary heap.
Binary Heap:

e Initialize: initialize the structure.

e Insert(key): insert a new key.

e Remove Max: remove the largest key.
The heap is defined as a data structure that supports the above operations, and satisfies:

e Binary tree

e Atevery node:

o Partial order: key(child) < key(parent)
o Leftfilled levels: the last level is left filled, the levels above are full.

That means that:

e Atevery node, that node is the largest from the tree of which that node is its root.

e You don’t know anything of the relation between any left child and right child. Otherwise that’s a binary search

tree.

The relationship above is called heap-order.
The left-filling character means you can put the elements physically in an array, so for any node i:

e Left child sits at 2i

e Rightchildsitsat 2i + 1

e Parent=idiv?2
The height of the heap is Ign so any operation takes Ign time: H(n) = Ig, n.

