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Administration 
Tom Plick: TA for on-campus students, Tuesdays 16:00-18:00 

Prof. Ali Shkoufandeh: room 141, Tuesdays 17:00-18:00 

 Assignments are posted from the 3
rd

 edition of the book, submission online or in class. 

 Both midterm and final exams are 3-4 hours. 

 Midterm exam: closed-book, one page allowed. Will concise 30% of final grade. 

 

Notes to self: 
Cover skip-lists 

 

Problem: 

Language - collection of valid strings. For instance, the language of sorted sequences: 

Given a sequence:           , it is considered sorted if it satisfies:            

So the language of sorted sequences is *                  + 

To verify if a sequence is sorted, i.e. in the language, you design an algorithm that outputs either yes or no for an input 

sequence. 

This is a decision problem:   
 
  – for it you design an algorithm:  ( )                     

Another problem would be an optimization problem. 

 

Insertion Sort: 
Given an initially not sorted sequence, the algorithm sorts the sequence in the following way: 

The initial condition is: the sequence is unsorted. There is a sorted part in the array which is initially is empty. 

The outer loop takes a misplaced element, pushes it as far as possible in the sorted part. 

The invariance of the loop is: in every iteration the sorted part grows and the unsorted part shrinks. So this is a finite 

algorithm. 

The finite state of the sequence is that the array is sorted. 

What about complexity? 

In the worst case, each element   is to be pushed     steps to the left (with initial backwards sorted sequence). And so the 

time complexity is  ( )   (  ) 

The space complexity of the algorithm is  ( )   ( ) 

But, this is not the most efficient algorithm for sorting, as there are algorithms that merge in  (     ). 

 

Prime Factorization: 
                 is not prime. 

This is a decision problem: given  , is   prime? 

Brute force method: 

                

                              

Better would be to get to √  instead of  , since if   has non-trivial factors, one of them is definitely  √ . 

The complexity over the size of the input:   ⌈     ⌉       and so if the complexity is √  it is actually √    
 

 , so 

the time complexity of the problem is exponential. 
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Another decision problem: 
A decision problem: given   *       +         That maps for instance to finding a file in a filesystem. 

The time complexity of the problem, the worst case is n – you have to go over the entire set until you find  . The best case 

is constant, but it doesn’t happen very often… 

So the above is the lower bound of the complexity of the problem (not the algorithm). That is, no non-trivial algorithm 

exists that can solve this problem in less than   time. 

 

Data Structure: 
Data structures are designed to allow efficient performance for accessing data. 

 

For the file search problem above, we’ll define a permutation:  ( )    
 

     
 

   

This data structure allows binary search: 

You look at the total array first, and compare   with   
 
, and after only one operation you eliminated 

 

 
 of the elements. The 

next step would recursively continue to the segment where   is at. The second step eliminates 
 

 
 elements. In general, after 

the   comparison we eliminated 
 

  
 elements. Therefore 

 

  
   when              steps. 

And so the data structure allowed us performing a task faster. 

 

Running time analysis: 
You want the worst case which is     ( ). 

You can also look at the expectancy:  , ( )- 

 

Back to insertion sort: 

The best behavior of the algorithm is for an already sorted sequence. In that case the complexity is  . 

We got to the complexity:  ( )    ((   )  (   )  (   ))
              

  ∑ (    )
 
   , where the last term is 

 (   )

 
 as 

main term. Eventually, we only care of the main term asymptotically. 

For instance:  ( )                 (  ), i.e. as    ,  (  ) and the others grow slower than  (  ). 

Mathematically: 

      
             

  
  , that is asymptotically the numerator grows 5 times faster than the denominator. 

Whereas:       
    

  
   

 

          notations: 

 ( )  ∑( )

 

   

  (∑ 

 

   

)   (  ) 

  means: the term on the left of the equation grows as fast as the term in the  . 

 ( )   ( )        

 ( )   ( )   ( ) 

But!  ( )   ( )     ( )
       

  ( ) 
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Definition: big  : 

 ( )   ( ( ))                              ( )     ( ) 

So there exists a constant (at least one) and a breakpoint such that after that breakpoint,   grows slower than    . 

For instance:       (  ) 

The O notations says that       
 ( )

 ( )
   

Big O is like     

 

Definition: small  : 

 ( )   ( ( ))                               ( )     ( ) 

No matter what constant choose, there is a break point from which on    ( ) is strictly bigger than  ( ), that is  ( ) 

grows “much” faster than  ( ). 

Mathematically:       
 ( )

 ( )
   -  ( ) grows much faster than  ( ), asymptotically. 

For instance:     (  ) since       
  

  
   

o is like     

 

Definition: big Omega –  : 

 ( )   ( ( ))                                ( )   ( ) 

This is the opposite of the   notation:     (  )      (  ) 

  is like     

 

Definition: small omega:  : 

 ( )   ( ( ))                                 ( )   ( ) 

So if  ( )   ( ( )) then       
 ( )

 ( )
   

  is like     

 

Definition: big theta –  : 

 ( )   ( ( ))                                  ( )   ( )      ( ) 

If    ( )    ( ) then        ( ) 

If    ( ) then       
 

 
          

For instance:       
       

  
          

 

  
    

   ( )     ( ) and    ( ) 

 

Having the possibility to compare functions is non-trivial always (such as sin or cos). 
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Problem (quiz): 

Given a sequence        , find max and 2-max in      ( ) time (infinite space): 

 First compare each pair, totally comparing 
 

 
 comparisons. 

 Do the same one level up - 
 

 
 more comparisons, and so on until you get to the top – which is the max. the total 

operations are 
 

 
 
 

 
   

 

     
 

 As we go up in the structure, each one you bit to the top – remember in a list (infinite list). Since you go up      

steps, the max has 2-max in his list, which is of length     . 

Therefore:        

If you also want the 3-max, you’ll spend                  since after the first        where we find max and 2-

max, we do the same for the     -list of max (which contains 2-max and 3-max), and that goes for another     ,   

       - , which is             . 

 

Divide and Conquer: 
Breaking a problem into sub problems, solve them, and merge the solutions. 

For instance, Hanoy tower problem: 

The simplest case contains 3 polls and 3 disks sorted by descending size on one poll, and you wish to move all disks to a 

different poll, keeping that every disk is placed only on bigger disk than it. 

The solution is D&C: 

 Solve the problem for the top 2 

 Move the 3
rd

 to the desired poll 

 Solve the problem again for 2 

In general, to solve a n-disks Hanoy tower, we will solve the problem for    , and so on and so forth. So to solve one 

problem of size   you solve 2 problems of size     and make one move: 

 ( )    (   )     ,  (   )   -       (   )          ,  (   )   -         

   (   )                (   )  ∑  
   

   

   

And when       you stop, that is       and so:  ( )       ( )  ∑      
    where  ( )    

  ( )                      operations. 

And so, the D&C algorithm is exponential. 

 

The binary search is also a type of D&C. The recurrence: 

 ( )   .
 

 
/     .

 

 
/         .

 

  
/        

0
 

  
          1 

  ( )   ( )        

 

The insertion sort is also recursive (not in the classical sense). The recurrence is: 

 ( )   (   )     (   )       (   )           (   )  ∑ 

 

   

  

,           - 

  ( )  (   )  (   )        
 (   )
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Merge Sort: 
To sort a sequence of size  : 

 Divide the sequence into 2 sequences of size 
 

 
 

 Apply the algorithm recursively on each of the two parts to sort them. 

 After the 2 parts are sorted: 

o Prepare an empty array, and have 2 pointers to the beginnings of the sorted parts. 

o Each time take the minimum of the 2 pointers and advance that pointers 

Total:   for this part 

Recurrence: 

 ( )    .
 

 
/      0  .

 

 
/  

 

 
1      0  .

 

 
/  

 

 
1  

 

 
        .

 

  
/               

 ( )        ( )                  

 

Summary: 

 Hanoy:  ( )    (   )     (  ) 

 Merge Sort:  ( )    .
 

 
/     (     ) 

The small difference above – how much is left for “future actions” – can have great implications over the complexity. Hanoy 

leaves almost all for the next iteration, Merge sort is not. 


