
1
CS521 \ lec01 2011-09-20 Ariel Stolerman

Administration
Tom Plick: TA for on-campus students, Tuesdays 16:00-18:00

Prof. Ali Shkoufandeh: room 141, Tuesdays 17:00-18:00

 Assignments are posted from the 3
rd

 edition of the book, submission online or in class.

 Both midterm and final exams are 3-4 hours.

 Midterm exam: closed-book, one page allowed. Will concise 30% of final grade.

Notes to self:
Cover skip-lists

Problem:

Language - collection of valid strings. For instance, the language of sorted sequences:

Given a sequence: , it is considered sorted if it satisfies:

So the language of sorted sequences is * +

To verify if a sequence is sorted, i.e. in the language, you design an algorithm that outputs either yes or no for an input

sequence.

This is a decision problem:

 – for it you design an algorithm: ()

Another problem would be an optimization problem.

Insertion Sort:
Given an initially not sorted sequence, the algorithm sorts the sequence in the following way:

The initial condition is: the sequence is unsorted. There is a sorted part in the array which is initially is empty.

The outer loop takes a misplaced element, pushes it as far as possible in the sorted part.

The invariance of the loop is: in every iteration the sorted part grows and the unsorted part shrinks. So this is a finite

algorithm.

The finite state of the sequence is that the array is sorted.

What about complexity?

In the worst case, each element is to be pushed steps to the left (with initial backwards sorted sequence). And so the

time complexity is () ()

The space complexity of the algorithm is () ()

But, this is not the most efficient algorithm for sorting, as there are algorithms that merge in ().

Prime Factorization:
 is not prime.

This is a decision problem: given , is prime?

Brute force method:

Better would be to get to √ instead of , since if has non-trivial factors, one of them is definitely √ .

The complexity over the size of the input: ⌈ ⌉ and so if the complexity is √ it is actually √

 , so

the time complexity of the problem is exponential.

2
CS521 \ lec01 2011-09-20 Ariel Stolerman

Another decision problem:
A decision problem: given * + That maps for instance to finding a file in a filesystem.

The time complexity of the problem, the worst case is n – you have to go over the entire set until you find . The best case

is constant, but it doesn’t happen very often…

So the above is the lower bound of the complexity of the problem (not the algorithm). That is, no non-trivial algorithm

exists that can solve this problem in less than time.

Data Structure:
Data structures are designed to allow efficient performance for accessing data.

For the file search problem above, we’ll define a permutation: ()

This data structure allows binary search:

You look at the total array first, and compare with

, and after only one operation you eliminated

 of the elements. The

next step would recursively continue to the segment where is at. The second step eliminates

 elements. In general, after

the comparison we eliminated

 elements. Therefore

 when steps.

And so the data structure allowed us performing a task faster.

Running time analysis:
You want the worst case which is ().

You can also look at the expectancy: , ()-

Back to insertion sort:

The best behavior of the algorithm is for an already sorted sequence. In that case the complexity is .

We got to the complexity: () (() () ())

 ∑ ()

 , where the last term is

 ()

 as

main term. Eventually, we only care of the main term asymptotically.

For instance: () (), i.e. as , () and the others grow slower than ().

Mathematically:

 , that is asymptotically the numerator grows 5 times faster than the denominator.

Whereas:

 notations:

 () ∑()

 (∑

) ()

 means: the term on the left of the equation grows as fast as the term in the .

 () ()

 () () ()

But! () () ()

 ()

3
CS521 \ lec01 2011-09-20 Ariel Stolerman

Definition: big :

 () (()) () ()

So there exists a constant (at least one) and a breakpoint such that after that breakpoint, grows slower than .

For instance: ()

The O notations says that
 ()

 ()

Big O is like

Definition: small :

 () (()) () ()

No matter what constant choose, there is a break point from which on () is strictly bigger than (), that is ()

grows “much” faster than ().

Mathematically:
 ()

 ()
 - () grows much faster than (), asymptotically.

For instance: () since

o is like

Definition: big Omega – :

 () (()) () ()

This is the opposite of the notation: () ()

 is like

Definition: small omega: :

 () (()) () ()

So if () (()) then
 ()

 ()

 is like

Definition: big theta – :

 () (()) () () ()

If () () then ()

If () then

For instance:

 () () and ()

Having the possibility to compare functions is non-trivial always (such as sin or cos).

4
CS521 \ lec01 2011-09-20 Ariel Stolerman

Problem (quiz):

Given a sequence , find max and 2-max in () time (infinite space):

 First compare each pair, totally comparing

 comparisons.

 Do the same one level up -

 more comparisons, and so on until you get to the top – which is the max. the total

operations are

 As we go up in the structure, each one you bit to the top – remember in a list (infinite list). Since you go up

steps, the max has 2-max in his list, which is of length .

Therefore:

If you also want the 3-max, you’ll spend since after the first where we find max and 2-

max, we do the same for the -list of max (which contains 2-max and 3-max), and that goes for another ,

 - , which is .

Divide and Conquer:
Breaking a problem into sub problems, solve them, and merge the solutions.

For instance, Hanoy tower problem:

The simplest case contains 3 polls and 3 disks sorted by descending size on one poll, and you wish to move all disks to a

different poll, keeping that every disk is placed only on bigger disk than it.

The solution is D&C:

 Solve the problem for the top 2

 Move the 3
rd

 to the desired poll

 Solve the problem again for 2

In general, to solve a n-disks Hanoy tower, we will solve the problem for , and so on and so forth. So to solve one

problem of size you solve 2 problems of size and make one move:

 () () , () - () , () -

 () () ∑

And when you stop, that is and so: () () ∑
 where ()

 () operations.

And so, the D&C algorithm is exponential.

The binary search is also a type of D&C. The recurrence:

 () .

/ .

/ .

/

0

 1

 () ()

The insertion sort is also recursive (not in the classical sense). The recurrence is:

 () () () () () ∑

, -

 () () ()
 ()

5
CS521 \ lec01 2011-09-20 Ariel Stolerman

Merge Sort:
To sort a sequence of size :

 Divide the sequence into 2 sequences of size

 Apply the algorithm recursively on each of the two parts to sort them.

 After the 2 parts are sorted:

o Prepare an empty array, and have 2 pointers to the beginnings of the sorted parts.

o Each time take the minimum of the 2 pointers and advance that pointers

Total: for this part

Recurrence:

 () .

/ 0 .

/

1 0 .

/

1

 .

/

 () ()

Summary:

 Hanoy: () () ()

 Merge Sort: () .

/ ()

The small difference above – how much is left for “future actions” – can have great implications over the complexity. Hanoy

leaves almost all for the next iteration, Merge sort is not.

