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1) CLRS Page 654, Exercise 24.1-3 

Let   (   ) be a weighted directed graph with no negative-weight cycles over a weight function      . 

Let      {                (                (   ))      }. 

Following is a suggestion of a change in the Bellman-Ford algorithm that terminates in     passes without knowing   in 

advance: 

Since we know the maximum size of any shortest path from   to any     * + is  , it is sufficient to stop after   passes 

as no  -values will change after   passes – that is all shortest paths have been found. In that case we are guaranteed that 

no   (and  ) values will be changed after   iterations. Since   is not known in advance we can simply track if changes are 

done anywhere along current iteration, and if no changes to any of the  -values occur, we can stop – that will happen of 

course at the     iteration. 

The changes are as follows: 

 In the initialization process add another field                 and initialize it to     . 

 Change      (     ) as follows: 

            (   )  
          (   ) 
       
                      

 Change the relaxation     loop in the main procedure of Bellman-Ford to the following       loop: 

                             
                       
          (   )       
       (     ) 

At the     iteration no changes will occur by any of the modified       calls, thus the next condition check in the       

loop will fail and the passes will stop. 

 

2) CLRS Page 655, Exercise 24.1-6 

Let   (   ) be a weighted directed graph with a negative-weight cycle over a weight function      . Following is an 

efficient algorithm to list the vertices of one such cycle (a variation of the original Bellman-Ford algorithm): 

 In the initialization process add another bit     for all     that will later hold 1 if this node is part of a negative-cycle 

and 0 otherwise. Initialize all       for all    . 

In addition initialize an empty negative-cycle list       *+. 
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 Change the part in Bellman-Ford that checks for a negative cycle (as we know for sure there will be one) as follows: 

         (   )       
             (   )  
        
         
              ( ) 
                     
               
            
               (    ) 
               
(if the graph doesn’t contain a negative cycle, then at this level we can return        *+). 

Correctness: 

By the correctness of Bellman-Ford we know that after the     passes over all     and relaxations, if there isn’t a 

negative cycle in the graph then          (   ) should be       for all (   )   . However, if there is a negative 

cycle, the first (   )    that evaluates          (   ) to      must be an edge in a negative cycle: 

 If (   ) is not in a negative cycle or affected by one, the condition will evaluate to      . 

 If (   ) is not in a negative cycle but IS affected by one, since we stopped updating  -values, the condition cannot 

evaluate to      (because last time when          (   ), we updated          (   ), so no matter the 

value of  (   ), the “ ” will not hold again). 

 The condition may apply only when (   ) is on a negative cycle, as it is guaranteed that if we have a negative cycle the 

condition will be      (derives from the correctness of the finding negative-cycles in the original BF), and since it 

cannot be any other edge (as presented above), it must be on a negative cycle. 

Furthermore, it is guaranteed that by the end of the BF relaxation passes, for each negative cycle    :            

since going through the cycle as many times as we want assures reducing     for each    , thus     must be the 

predecessor of   in the cycle (could be overlapping cycles). Therefore once we find (   ) that satisfies the condition of the 

  , going through the   path from   will assure: 

 We will go through the entire negative cycle. 

 Marking       will assure we will stop when all the cycle is covered. 

Thus       will eventually contain all vertices in a negative cycle (or stay empty if none exists). 

Running-time: 

The initialization process and BF passes stay with the same running time as the original BF. Finding (   ) that satisfies the 

   condition is  ( ) and finding the cycle’s members is then  ( ). The total running time is therefore like BF, which is 

 (  ) (which is  (  )). 
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3) CLRS Page 658, Exercise 24.2-4 

Following is an algorithm to count the total number of paths in a DAG: 

                ( ): 

                                                              

             
        // will hold the total number of paths from this node and on 
             (                                            )  
                 , -  
          (     ) 
        
              
                 
             

Correctness: 

When topologically sorted, for an edge (   ) the total number of paths from   that go through this edge is the total 

number of paths from   plus 1 – the path     which is the edge (   ) itself. Summing from the last node in topological 

order (with value 0, as no paths start from it), each node will eventually hold as  -value the total number of paths that start 

from it and go through each of its edges. Since we go in reversed-topological order, it is guaranteed that we miss no paths 

to count for the current   checked. Eventually, summing all  -values will give the total number of paths in the graph. 

If the graph would have had a cycle, we could immediately determine the answer is   (go through a cycle as many times as 

we like to generate as many paths as we like). 

Running-time: 

Topologically sort and reverse the order takes  (   ) (as shown for instance for the DAG-shortest-paths algorithm). The 

initialization of the  -values is  ( ). The update of all  -values for all nodes is  ( ). Finally the creation of       is  ( ). 

Therefore the total is  (   ). 

 

4) CLRS Page 663, Exercise 24.3-6 

Let   (   ) be a directed graph, and let     ,   - be a reliability function from the source node to the destination 

node of each edge, i.e.  (   )     (   )    ,                                 -. Furthermore, these probabilities 

are independent. 

Following is an efficient algorithm to find the most reliable path between two given vertices. For that we first define a 

modified Dijkstra’s algorithm as follows: 

                 (     )  
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              ( ) 
     * + 
                 , -  
              (   )  
            (   ) 
         
Then our algorithm would be: 

                  (       )  

                     (     ) 

                                                

Correctness: 

First, since the probabilities   are independent, then the reliability of a path             equals the product of the 

probabilities of each edge in the path, i.e. ∏  (       )
   
   . The modified Dijkstra does exactly the same as the original 

Dijkstra, only instead of keeping minimums, it keeps maximums, and instead of keeping sums – it keeps products. Note that 

since all  -values are non-negative, the correctness stays the same as for the original Dijkstra. 

The initialization of       to all     * + adjusts the initial values to fit the task of finding a maximum rather than a 

minimum, and initializing       makes sure the first product won’t be 0, and affect the followings (also, the reliability of a 

path from     is 1: no path at all). 

After applying the modified Dijkstra, all is left is to find the  -path from   to   and return its inverse – as that is the path 

from   to   that produces the maximum reliability. 

Another approach is to use the original Dijkstra with the weight function  (   )      ( (   )), as minimizing 

∑    ( (   )) is the same as maximizing ∑    ( (   )) which is the same as maximizing    ∏ (   ) which is the same 

as maximizing ∏ (   ) – what we’re looking for. 

Running-Time: 

When using a Fibonacci heap for the priority queue implementation, the modified Dijkstra runs the same as the original 

Dijkstra, i.e.  (      ). Finding the inverse  -path is another  ( ) (no cycles can contribute the reliability of a path). 

Therefore the total running time is  (      ). 

I don’t give a tight bound since the book shows an  -bound for the original Dijkstra algorithm. 

 

5) CLRS Page 692, Exercise 25.1-8 

Following is a modification of the                                 algorithm to use only  (  ) space. First we 

define the procedure                      (      ) in a similar way as the original                 

     (   ), only instead of allocating a new     matrix   , it uses the given    and updates its values. Since we have 

   
    as an initialization as part of the original                      , no need to do anything further to    when 

sent to                               . 
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We then we define the modification of the                                 algorithm as follows: 

                                        ( )  
         
                             
      
          
    
    
             

                               ( (   )                       ) 

      
       
        (   )      

Correctness: 

The correctness derives from the correspondence to the original algorithm. At each iteration we update  (   )      by 

multiplying          with itself, and incrementing   makes sure the last iteration’s updated matrix is the source for 

calculating the values of the matrix in the current iteration. We start correct since the first iteration with     uses    as 

target and      is used for calculation. 

Finally, the last matrix that was updated is the one returned as the answer – corresponding to the  ( ) matrix returned in 

the original algorithm. 

Space-wise we only use 2     matrices,    and   , as required. 

 

6) CLRS Page 699, Exercise 25.2-5 

If in the case where    
(   )

    
(   )

    
(   )

 (   ) we set    
( )

 to be    
(   )

 instead of    
(   )

, the predecessor matrix   

would still be correct. Recall that when    ,    
( )

    {   
(   )

    
(   )

    
(   )

}, so in case of equality it doesn’t matter 

which of the two paths will be taken, as the weight of both paths is the same. Essentially it means we would go from   to   

through   instead of not through  , but in this case both are valid shortest paths, meaning the   matrix would still hold 

shortest paths. 

 

7) CLRS Page 700, Exercise 25.2-9 

Say we have an algorithm that computes the transitive closure of a DAG in  (   ) (           ) (  is monotonically 

increasing). Let   (   ) be a general directed graph, and let    (    ) (       ) be its transitive closure. Following 

is an algorithm to compute    in  (   )   (    ). We use the strongly-connected-components graph of  , 

     (         ), where each        will actually be a set of nodes     that belong to that component. 

                       ( )  
                                                             (         ) 
              *+ 
                 
                    
               * +    // if we want self-edges in   , use   instead of   * + 

      *(   )+ 
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                                 (    ) 
         (     )         
                
                 
         *(   )+ 
          (    ) 

Correctness: 

We know that every pair of nodes in that belong to the same strongly connected component have a path from one to the 

other and vice versa, hence the first addition loop for    it correct. Furthermore we know that if (     )        then 

there’s a path from    to    in     , therefore there are           such that there’s a path from   to   (     ). 

Since     are each connected to all nodes in their components       respectively, then there’s a path from each      to 

each     , so the second addition loop for    is also correct. Finally, if there is no path from some     to some    , 

then     cannot be in the same connected component, and there could not be a path from  ’s component    to  ’s 

component   , hence (     )        - and the algorithm above doesn’t take any such edges into   . 

Running-time: 

Constructing      takes  (   ), and         ( )         ( ) thus finding the transitive closure of      is 

 ( (   )). For each edge that is to be added to    we go through exactly once, and we don’t check any other edges, so 

the first and second addition loops together take  (  ). Since     , the total running time is  (   )   (    ), as 

required. 

 

8) CLRS Page 397, Exercise 15.4-5 

Following is an  (  )-time algorithm to find the longest monotonically increasing subsequence of a sequence of   

numbers: 

 Copy the input   into   and sort  . 

 Return    (   ) 

Correctness: 

Finding the largest subsequence of   in its sorted copy   will give the largest monotonically increasing subsequence of   

since that subsequence, and any monotonically increasing subsequence, is by itself a sorted sequence. Therefore   will 

actually hold that subsequence in the correct order, but might have extra elements inserted between elements of the 

largest subsequence (elements that originally in   were in other positions). Therefore     solves the problem of finding the 

largest match in   of a subsequence in  , meaning the largest subsequence of monotonically increasing values. 

Running-time: 

The copy procedure takes  ( ), followed by  (    ) for sorting  . Then applying     on two inputs of size   takes  (  ). 

The total running time is then  (  ). 

 


