
Ariel Stolerman \ CS521 Fall 2011 Assignment #4 1

CS521 Fall 2011 \ Assignment #4

Ariel Stolerman

1) CLRS Page 654, Exercise 24.1-3

Let () be a weighted directed graph with no negative-weight cycles over a weight function .

Let { (()) }.

Following is a suggestion of a change in the Bellman-Ford algorithm that terminates in passes without knowing in

advance:

Since we know the maximum size of any shortest path from to any * + is , it is sufficient to stop after passes

as no -values will change after passes – that is all shortest paths have been found. In that case we are guaranteed that

no (and) values will be changed after iterations. Since is not known in advance we can simply track if changes are

done anywhere along current iteration, and if no changes to any of the -values occur, we can stop – that will happen of

course at the iteration.

The changes are as follows:

 In the initialization process add another field and initialize it to .

 Change () as follows:

 ()
 ()

 Change the relaxation loop in the main procedure of Bellman-Ford to the following loop:

 ()
 ()

At the iteration no changes will occur by any of the modified calls, thus the next condition check in the

loop will fail and the passes will stop.

2) CLRS Page 655, Exercise 24.1-6

Let () be a weighted directed graph with a negative-weight cycle over a weight function . Following is an

efficient algorithm to list the vertices of one such cycle (a variation of the original Bellman-Ford algorithm):

 In the initialization process add another bit for all that will later hold 1 if this node is part of a negative-cycle

and 0 otherwise. Initialize all for all .

In addition initialize an empty negative-cycle list *+.

Ariel Stolerman \ CS521 Fall 2011 Assignment #4 2

 Change the part in Bellman-Ford that checks for a negative cycle (as we know for sure there will be one) as follows:

 ()
 ()

 ()

 ()

(if the graph doesn’t contain a negative cycle, then at this level we can return *+).

Correctness:

By the correctness of Bellman-Ford we know that after the passes over all and relaxations, if there isn’t a

negative cycle in the graph then () should be for all () . However, if there is a negative

cycle, the first () that evaluates () to must be an edge in a negative cycle:

 If () is not in a negative cycle or affected by one, the condition will evaluate to .

 If () is not in a negative cycle but IS affected by one, since we stopped updating -values, the condition cannot

evaluate to (because last time when (), we updated (), so no matter the

value of (), the “ ” will not hold again).

 The condition may apply only when () is on a negative cycle, as it is guaranteed that if we have a negative cycle the

condition will be (derives from the correctness of the finding negative-cycles in the original BF), and since it

cannot be any other edge (as presented above), it must be on a negative cycle.

Furthermore, it is guaranteed that by the end of the BF relaxation passes, for each negative cycle :

since going through the cycle as many times as we want assures reducing for each , thus must be the

predecessor of in the cycle (could be overlapping cycles). Therefore once we find () that satisfies the condition of the

 , going through the path from will assure:

 We will go through the entire negative cycle.

 Marking will assure we will stop when all the cycle is covered.

Thus will eventually contain all vertices in a negative cycle (or stay empty if none exists).

Running-time:

The initialization process and BF passes stay with the same running time as the original BF. Finding () that satisfies the

 condition is () and finding the cycle’s members is then (). The total running time is therefore like BF, which is

 () (which is ()).

Ariel Stolerman \ CS521 Fall 2011 Assignment #4 3

3) CLRS Page 658, Exercise 24.2-4

Following is an algorithm to count the total number of paths in a DAG:

 ():

 // will hold the total number of paths from this node and on
 ()
 , -
 ()

Correctness:

When topologically sorted, for an edge () the total number of paths from that go through this edge is the total

number of paths from plus 1 – the path which is the edge () itself. Summing from the last node in topological

order (with value 0, as no paths start from it), each node will eventually hold as -value the total number of paths that start

from it and go through each of its edges. Since we go in reversed-topological order, it is guaranteed that we miss no paths

to count for the current checked. Eventually, summing all -values will give the total number of paths in the graph.

If the graph would have had a cycle, we could immediately determine the answer is (go through a cycle as many times as

we like to generate as many paths as we like).

Running-time:

Topologically sort and reverse the order takes () (as shown for instance for the DAG-shortest-paths algorithm). The

initialization of the -values is (). The update of all -values for all nodes is (). Finally the creation of is ().

Therefore the total is ().

4) CLRS Page 663, Exercise 24.3-6

Let () be a directed graph, and let , - be a reliability function from the source node to the destination

node of each edge, i.e. () () , -. Furthermore, these probabilities

are independent.

Following is an efficient algorithm to find the most reliable path between two given vertices. For that we first define a

modified Dijkstra’s algorithm as follows:

 ()

Ariel Stolerman \ CS521 Fall 2011 Assignment #4 4

 ()
 * +
 , -
 ()
 ()

Then our algorithm would be:

 ()

 ()

Correctness:

First, since the probabilities are independent, then the reliability of a path equals the product of the

probabilities of each edge in the path, i.e. ∏ ()

 . The modified Dijkstra does exactly the same as the original

Dijkstra, only instead of keeping minimums, it keeps maximums, and instead of keeping sums – it keeps products. Note that

since all -values are non-negative, the correctness stays the same as for the original Dijkstra.

The initialization of to all * + adjusts the initial values to fit the task of finding a maximum rather than a

minimum, and initializing makes sure the first product won’t be 0, and affect the followings (also, the reliability of a

path from is 1: no path at all).

After applying the modified Dijkstra, all is left is to find the -path from to and return its inverse – as that is the path

from to that produces the maximum reliability.

Another approach is to use the original Dijkstra with the weight function () (()), as minimizing

∑ (()) is the same as maximizing ∑ (()) which is the same as maximizing ∏ () which is the same

as maximizing ∏ () – what we’re looking for.

Running-Time:

When using a Fibonacci heap for the priority queue implementation, the modified Dijkstra runs the same as the original

Dijkstra, i.e. (). Finding the inverse -path is another () (no cycles can contribute the reliability of a path).

Therefore the total running time is ().

I don’t give a tight bound since the book shows an -bound for the original Dijkstra algorithm.

5) CLRS Page 692, Exercise 25.1-8

Following is a modification of the algorithm to use only () space. First we

define the procedure () in a similar way as the original

 (), only instead of allocating a new matrix , it uses the given and updates its values. Since we have

 as an initialization as part of the original , no need to do anything further to when

sent to .

Ariel Stolerman \ CS521 Fall 2011 Assignment #4 5

We then we define the modification of the algorithm as follows:

 ()

 (())

 ()

Correctness:

The correctness derives from the correspondence to the original algorithm. At each iteration we update () by

multiplying with itself, and incrementing makes sure the last iteration’s updated matrix is the source for

calculating the values of the matrix in the current iteration. We start correct since the first iteration with uses as

target and is used for calculation.

Finally, the last matrix that was updated is the one returned as the answer – corresponding to the () matrix returned in

the original algorithm.

Space-wise we only use 2 matrices, and , as required.

6) CLRS Page 699, Exercise 25.2-5

If in the case where
()

()

()

 () we set
()

 to be
()

 instead of
()

, the predecessor matrix

would still be correct. Recall that when ,
()

 {
()

()

()

}, so in case of equality it doesn’t matter

which of the two paths will be taken, as the weight of both paths is the same. Essentially it means we would go from to

through instead of not through , but in this case both are valid shortest paths, meaning the matrix would still hold

shortest paths.

7) CLRS Page 700, Exercise 25.2-9

Say we have an algorithm that computes the transitive closure of a DAG in () () (is monotonically

increasing). Let () be a general directed graph, and let () () be its transitive closure. Following

is an algorithm to compute in () (). We use the strongly-connected-components graph of ,

 (), where each will actually be a set of nodes that belong to that component.

 ()
 ()
 *+

 * + // if we want self-edges in , use instead of * +

 *()+

Ariel Stolerman \ CS521 Fall 2011 Assignment #4 6

 ()
 ()

 *()+
 ()

Correctness:

We know that every pair of nodes in that belong to the same strongly connected component have a path from one to the

other and vice versa, hence the first addition loop for it correct. Furthermore we know that if () then

there’s a path from to in , therefore there are such that there’s a path from to ().

Since are each connected to all nodes in their components respectively, then there’s a path from each to

each , so the second addition loop for is also correct. Finally, if there is no path from some to some ,

then cannot be in the same connected component, and there could not be a path from ’s component to ’s

component , hence () - and the algorithm above doesn’t take any such edges into .

Running-time:

Constructing takes (), and () () thus finding the transitive closure of is

 (()). For each edge that is to be added to we go through exactly once, and we don’t check any other edges, so

the first and second addition loops together take (). Since , the total running time is () (), as

required.

8) CLRS Page 397, Exercise 15.4-5

Following is an ()-time algorithm to find the longest monotonically increasing subsequence of a sequence of

numbers:

 Copy the input into and sort .

 Return ()

Correctness:

Finding the largest subsequence of in its sorted copy will give the largest monotonically increasing subsequence of

since that subsequence, and any monotonically increasing subsequence, is by itself a sorted sequence. Therefore will

actually hold that subsequence in the correct order, but might have extra elements inserted between elements of the

largest subsequence (elements that originally in were in other positions). Therefore solves the problem of finding the

largest match in of a subsequence in , meaning the largest subsequence of monotonically increasing values.

Running-time:

The copy procedure takes (), followed by () for sorting . Then applying on two inputs of size takes ().

The total running time is then ().

