
Ariel Stolerman \ CS521 Fall 2011 Extra Credit Assignment  1 
  

CS521 Fall 2011 \ Extra Credit Assignment 

Ariel Stolerman 

 

 

Page 110, Question 4-6 – Monge arrays: 

a. 

Let   be a      matrix. We will prove that: 

(1) The Monge array property:                                  [   ]   [   ]   [   ]   [   ]   

(2)                             [   ]   [       ]   [     ]   [     ] 

Proof (by induction): 

       : 

If (1) applies on   that is a     matrix, then  [   ]   [   ]   [   ]   [   ] is satisfied for all         and 

       , so it is specifically satisfied for            , which immediately derives (2). 

       : 

As suggested we will proof separately for rows and columns. The proof is similar so we show only for rows. 

We will prove that for          [   ]   [     ]   [     ]   [   ]. 

In the base case       and we get that exactly (2):  [   ]   [       ]   [     ]   [     ]. 

For the inductive step we assume correctness for all           [   ]   [     ]   [     ]   [   ]. Specifically, 

it applies for      , and we get: 

 [   ]   [       ]   [     ]   [     ]   [   ]   [     ]   [     ]   [       ]⏟                  
   

 

From assuming (2) we know: 

 [     ]   [     ]   [       ]   [   ]   [     ]   [       ]⏟                  
   

  [   ]   [     ] 

  [   ]   [     ]   [   ]   [     ]             [   ]   [     ]   [     ]   [   ] , as 

required. 

Doing the same for columns will derive that           [   ]   [     ]   [   ]   [     ] . 

Combined together we get the Monge array property (1), as required. 

 

b. 

By applying (a) we know we can only check all     sub-matrices for the property, and that will be sufficient. By checking 

that we find that if we increase      from 22 to 24, the array becomes Monge. 
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c. 

Let      be the index of the column containing the leftmost element of row  . We will prove that                  

for any     Monge array. 

We assume by contradiction that for some   {         }            . The minimum elements of rows   and 

    are  [      ]  [          ] by definition of  , thus  [   ]   [      ] for any        and  [     ]  

 [          ] for any         . Specifically:  [        ]   [      ]    [        ]   [          ]   

 [        ]   [        ]   [      ]   [          ] 

Since we assumed            , we will change the notations to fit with the original Monge array property such that 

                      and we get  [   ]   [   ]   [   ]   [   ], which contradicts the Monge array 

property. 

 

d. 

Given the indices of the columns with the leftmost minimum per each even row, we find the column index of the leftmost 

minimum of all odd rows as follows: 

By (c) we know that                      , so for all odd  ’s we only need to look between column        and 

      , which are given from the even rows’ minimum calculation earlier, in order to find     . The total is: 

 For     :          elements to inspect. 

 For     :             elements to inspect. 

 … 

 Without loss of generality, assume   is even, so for       :               elements to inspect. 

(If   is odd, the last would be:     :           ). 

Note that summing all together we get a telescopic sum plus        (depending if the number of rows is even or odd), 

which is a total of:      
 

 
 for an even   and   ⌈

 

 
⌉ for an odd  . In both cases that’s                 , as 

required. 

 

e. 

Let   be a     matrix input to the algorithm described in (d). Each recursive call gets an input matrix with the same 

number of columns   and half the number of rows of the level above it. Given what we proved in (d), the recurrence is: 

                      (omitting floor signs). Since we divide   by 2 at each recursive call, we will end up with 

    recursive calls. At each call, the  -part stays      since the number of columns of the input doesn’t change from call 

to call, so the total cost for the  -part is        . But the number of rows is divided by 2, so the total  -part cost is 

∑        
      

            

     
   

            

     
  (         )           . Therefore the total cost of the  -

part is     . That concludes to a total cost of           for the entire algorithm described in (d). 
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Page 188, problem 7-5 – Median-of-3 partition: 

a. 

Here is a formula for    as a function of   for             (for            ): 

       
 

 ⏟
                       
                   

  
   

   ⏟    
                     

           [ ]

 
   

   ⏟  
                    

      [ ]

 
           

           
 

 

b. 

In the original implementation of Randomized-Quicksort, the pivot is chosen by random, thus for an array of size   the 

probability for the lower median   ⌊
   

 
⌋ to be chosen is 

 

 
. 

Now, assuming     (thus omitting floor notations and taking 
   

 
 as the median index) the probability of the median to 

be chosen using the median-of-3 method is 
 (

   

 
  )(  

   

 
)

           
 

 (
     

 
)(

      

 
)

           
 

       

            
 

      

       
 

    

      
 

Now we will calculate the ratio between the improved and the original and look at it asymptotically: 

      
    

      
 

 

 
       

      

      
       

  
 

 

  
 

 

 
 

 
  we increased the chance of selecting the median by    . 

 

c. 

For a good split that is defined by choosing 
 

 
   

  

 
, the probability to get such split is: 

∫
           

           
  

  
 

 
 

 
 

           
∫               
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]   

 

          
 [ 
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When     we get the following probability: 

   
   

        

           
    

   

   
  
 

   
  
 

 
  
 

 
  

  
 

If we used the original algorithm, the chance of getting a good split as defined above is 
 

 
. Therefore the ratio is: 

  

  
 

 

 
 

  

  
   

  

 
  

 

 
     , thus by using the median-of-three we increased the chances of getting a good split as 

defined above by     . 
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d. 

The best case partition is picking the median at each iteration (                 ), which derives         running 

time for quicksort. Therefore any other method of choosing the pivot, including the median-of-three, will not affect the 

running time lower bound by more than a constant, concluding to         anyway. 

 


