
Ariel Stolerman \ CS521 Fall 2011 Extra Credit Assignment 1

CS521 Fall 2011 \ Extra Credit Assignment

Ariel Stolerman

Page 110, Question 4-6 – Monge arrays:

a.

Let be a matrix. We will prove that:

(1) The Monge array property: [] [] [] []

(2) [] [] [] []

Proof (by induction):

 :

If (1) applies on that is a matrix, then [] [] [] [] is satisfied for all and

 , so it is specifically satisfied for , which immediately derives (2).

 :

As suggested we will proof separately for rows and columns. The proof is similar so we show only for rows.

We will prove that for [] [] [] [].

In the base case and we get that exactly (2): [] [] [] [].

For the inductive step we assume correctness for all [] [] [] []. Specifically,

it applies for , and we get:

 [] [] [] [] [] [] [] []⏟

From assuming (2) we know:

 [] [] [] [] [] []⏟

 [] []

 [] [] [] [] [] [] [] [] , as

required.

Doing the same for columns will derive that [] [] [] [] .

Combined together we get the Monge array property (1), as required.

b.

By applying (a) we know we can only check all sub-matrices for the property, and that will be sufficient. By checking

that we find that if we increase from 22 to 24, the array becomes Monge.

Ariel Stolerman \ CS521 Fall 2011 Extra Credit Assignment 2

c.

Let be the index of the column containing the leftmost element of row . We will prove that

for any Monge array.

We assume by contradiction that for some { } . The minimum elements of rows and

 are [] [] by definition of , thus [] [] for any and []

 [] for any . Specifically: [] [] [] []

 [] [] [] []

Since we assumed , we will change the notations to fit with the original Monge array property such that

 and we get [] [] [] [], which contradicts the Monge array

property.

d.

Given the indices of the columns with the leftmost minimum per each even row, we find the column index of the leftmost

minimum of all odd rows as follows:

By (c) we know that , so for all odd ’s we only need to look between column and

 , which are given from the even rows’ minimum calculation earlier, in order to find . The total is:

 For : elements to inspect.

 For : elements to inspect.

 …

 Without loss of generality, assume is even, so for : elements to inspect.

(If is odd, the last would be: :).

Note that summing all together we get a telescopic sum plus (depending if the number of rows is even or odd),

which is a total of:

 for an even and ⌈

⌉ for an odd . In both cases that’s , as

required.

e.

Let be a matrix input to the algorithm described in (d). Each recursive call gets an input matrix with the same

number of columns and half the number of rows of the level above it. Given what we proved in (d), the recurrence is:

 (omitting floor signs). Since we divide by 2 at each recursive call, we will end up with

 recursive calls. At each call, the -part stays since the number of columns of the input doesn’t change from call

to call, so the total cost for the -part is . But the number of rows is divided by 2, so the total -part cost is

∑

 () . Therefore the total cost of the -

part is . That concludes to a total cost of for the entire algorithm described in (d).

Ariel Stolerman \ CS521 Fall 2011 Extra Credit Assignment 3

Page 188, problem 7-5 – Median-of-3 partition:

a.

Here is a formula for as a function of for (for):

 ⏟

 ⏟

 []

 ⏟

 []

b.

In the original implementation of Randomized-Quicksort, the pivot is chosen by random, thus for an array of size the

probability for the lower median ⌊

⌋ to be chosen is

.

Now, assuming (thus omitting floor notations and taking

 as the median index) the probability of the median to

be chosen using the median-of-3 method is
 (

)(

)

 (

)(

)

Now we will calculate the ratio between the improved and the original and look at it asymptotically:

 we increased the chance of selecting the median by .

c.

For a good split that is defined by choosing

, the probability to get such split is:

∫

∫

 [

]

 [

]

 [

]

 [

]

 (

)

When we get the following probability:

If we used the original algorithm, the chance of getting a good split as defined above is

. Therefore the ratio is:

 , thus by using the median-of-three we increased the chances of getting a good split as

defined above by .

Ariel Stolerman \ CS521 Fall 2011 Extra Credit Assignment 4

d.

The best case partition is picking the median at each iteration (), which derives running

time for quicksort. Therefore any other method of choosing the pivot, including the median-of-three, will not affect the

running time lower bound by more than a constant, concluding to anyway.

