
CS 510: Assignment 1

Fall 2012

Written

1. Does a finite state space always lead to a finite search tree? How about a finite state space that is a
tree? Can you precisely state what types of state spaces always lead to finite search trees?

2. Consider “iterative lengthening search,” an iterative analog to uniform cost search. The idea is to use
increasing limits on path cost. If a node is generated whose path cost exceeds the current limit, it is
immediately discarded. For each new iteration, the limit is set to the lowest path cost of any node
discarded in the previous iteration. Is this algorithm optimal for general path costs? In other words,
is it guaranteed to always produce the solution with the lowest possible path cost? Provide a formal
proof either of optimality or the contrary.

3. What is the average branching factor of 8-puzzle1?

4. Extra Credit: What is the average number of “slides” required to solve an 8-puzzle?

Please show all work and cite all sources.

Programming

You will be implementing a solver for the 8-puzzle game. You will implement BFS, DFS, and A∗.
For A∗ you may use any heuristic (preferably admissible) of your choosing, however, simple Manhattan

distance will suffice.
Once you have implemented all three search techniques, create a short report (just a couple paragraphs)

comparing their efficiency. To be statistically sound, this will require running each algorithm a number
of times over randomly-generated 8-puzzle instances. Either as a part of this report or a separate README

should be instructions for running/testing your code.
The game logic has been implemented in 8puzzle.lisp (available on the course website); you may choose

to use this file as a starting point.
All work must be done in Lisp and be executable in clisp (which is installed on tux.cs.drexel.edu).
You should ultimately end up with a function called something like “solve-8puzzle” that, given an

initial 8-puzzle instance will return a list of the moves required to get to the goal state. For example:

[1]> (load "8puzzle.lisp")

;; Loading file 8puzzle.lisp ...

;; Loaded file 8puzzle.lisp

T

[2]> (let ((puzzle (random-puzzle))) (print-puzzle puzzle) (solve-8puzzle ’BFS puzzle))

| 1 | 6 | 2 |

| 4 | | 3 |

1For a description of 8-puzzle see http://en.wikipedia.org/wiki/Fifteen_puzzle

1

| 7 | 5 | 8 |

(UP RIGHT DOWN LEFT DOWN RIGHT)

Here are some hints/guidelines:

• Implement the General-Search algorithm described in R&N (this means you’ll need the functions
Make-Queue, Empty?, et cetera).

• Implement the queuing functions for BFS, DFS, and A∗.

• You will probably need a function to determine whether the goal state has been reached and a function
that generates successor states.

• The search-space of 8-puzzle is cyclic; you will probably need some way of making sure equivalent
states are not expanded multiple times.

• Be aware that these algorithms take a long time to run. Depending on the speed of your processor and
the randomly-generated 8-puzzle instance, DFS may take an inordinate amount of time to terminate.
You may wish to read about configuring the Lisp compiler (compiled Lisp code will run orders of
magnitude faster than interpreted code).

2

