
0368.3049.01 Fall 2009

Introduction to Modern Cryptography

Benny Chor and Rani Hod

Assignment #1, version 2.1

Published Tues., October 20, 2010, and in revised form on Oct. 26. Due Tues., November 10,
in Rani Hod's mailbox (second �oor, Schreiber building).
This assignment contains three �dry� problems and three �wet� ones. E�cient solutions are always
sought, but a solution that works ine�ciently is better than none. The answers to the the �wet�
problems should be given as the output of a Sage, Maple, or WolframAlpha session.
On Oct. 28 we will have some demos of running Sage.

Problem 1. Let p be a 128-bit prime and let Zp be the set of integers {0, . . . , p−1}. Consider the following
encryption scheme. The secret key is a pair of integers a, b ∈ Zp where a 6= 0. An encryption
of a message M ∈ Zp is de�ned as:

Ea,b(M) = aM + b mod p

(a) Show that when E is used to encrypt a single message M ∈ Zp, the system is a perfect
cipher. (For a de�nition, refer to notes from the �rst lecture.)

(b) Show that when E is used to encrypt two messages M1, M2 ∈ Zp, the system is not a
perfect cipher.
Hint: Consider the case M1 = M2.

(c) Show that a known plaintext attack with just two pairs of plaintext/ciphertext Ci =
Ea,b(Mi) (i = 1, 2) can recover the secret key a, b with high probability.

Problem 2. The following is a special case of a permutation cipher: Let m, n be positive integers. Partition
the plaintext to segments of nm letters each. Write down each plaintext segment by rows in
an n-by-m matrix. The ciphertext is created by going over the columns of the matrix. For
example, if n = 3, m = 4 the plaintext �cryptography� will lead to the matrix

c r y p
t o g r
a p h y

and the ciphertext will be �ctaropyghpry�.

(a) Decipher the ciphertext (generated in the abovementioned way, not necessarily with the
same m and n) �myamraruyiqtenctorahroywdsoyeouarrgdernogw�.

(b) Describe an e�ective method for deciphering long enough ciphertexts, encrypted by ap-
plying a regular substitution cipher �rst, followed by a permutation cipher as above.
Limit your answer to no more than 8 lines.

Problem 3. The �le cipher1.txt contains a message encrypted by a simple substitution cipher. The
original message language is Hebrew and only characters in the Hebrew alphabet are encoded,
leaving punctuation and whitespace intact.

1

(a) First we collect statistics about the Hebrew language. Get yourself a nice long Hebrew
document (see, for example, http://benyehuda.org/) and estimate the order of the letter
frequencies.

(b) Do the same for the enciphered text and try to match the statistics to those you have
collected. It is expected to approximately match the original message, so can you now
read it? Try to explain what you got.

(c) The message is known to contain somewhere in it the text �YALDI HATZACH�. Does
this help?

Note: the cipher, as well as texts in project Ben-Yehuda, can be read using the following Sage

command.

m = open('filename.txt').read().decode('cp1255')

Problem 4. RTAU (an Internet music station) wishes to broadcast streamed music to its subscribers. Non-
subscribers should not be able to listen in. When a person subscribes she is given a software
player (which cannot be tempered with) with a number of secret keys embedded in it. RTAU
encrypts the broadcast using a symmetric cryptosystem (private key) with a 128-bit key, K.
The secret keys in each legitimate player can be used to derive K and enable legitimate
subscribers to tune in. When a subscriber cancels her subscription, RTAU will encrypt future
broadcasts using a di�erent key K ′. All legal subscribers should be able to derive K ′ , while
the canceled subscriber should not.

(a) Suppose the total number of potential subscribers is less than n = 105. Let R1, R2, . . . , Rn

be n random independent values, 128 bits each . The player shipped to subscriber number
u contains all the Ri's except for Ru (i.e. each player contains 99999 keys). Let S be
the set of currently subscribed users. Show that RTAU can construct a key K, used to
encrypt the broadcast, so that every subscriber in S can derive K (from the Ri's in her
player), while any single subscriber outside of S cannot derive K. You may assume that
the set S is known to everyone (e.g. it is a plain part of the broadcast) . Brie�y explain
why your construction satis�es the required properties.

(b) Is your construction in part (a) collusion resistant? That is, can two canceled subscribers
combine the secrets embedded in their player to build a new operational player?

Remark: Much better solutions to this problem exist.

Problem 5. In this problem we will investigate the run time behaviour of Euclid's greatest common devisor
(gcd) algorithm, and while doing so, start becoming aquainted with Sage. As usual, if you
are already familiar with Maple or WolframAlpha, you are welcome to write your code using
these languages, but the hints below refer to Sage.

Repeat the following one thousand (1000) times for every integer n in the range 5 ≤ n ≤ 30.
Choose at random a pair of integers a, b with a ≥ b in the range 2n < b ≤ a ≤ 2n+1.
Compute gcd(a, b) using just Sage's mod operator (for example, mod(32, 17) = 15). Count

the number of mod operations, and record it. Compute the average and the maximum of this
count for the di�erent values of n, and separately plot the two as a function of n.

2

Submit your code, the plots, the pair a, b attaining the maimum count per n, and your
estimates of both functions (e.g. 2n/2, sin (n) , 3.7n2, etc.).

Some Sage hints:

• randint(a,b) returns a random integer x in the range a ≤ x ≤ b. Alternatively,
getrandbits(n) generates a long int with n random bits (but note this int will have
its most signi�cant bit equal 0 half the time).

• The following small piece of code demonstrates one form of loop structure. It generates
and prints 10 pairs of random integers in the range [33, 64].

for k in range(10):

print (randint(33,64), randint(33,64))

For plotting, generate a list of pairs of the form (n, f (n)) using Sage list operations and plot
it using point or plot_step_function:

P = [(x, x**2) for x in range(10)]

point(P); plot_step_function(P)

Problem 6. In this problem we will become familiar with �nite �elds GF
(
pk

)
where k > 1. Speci�cally,

we will look at the �eld GF
(
24

)
.

Find an irreducible polynomial f (x) of degree 4 over the base �eld of characteristic 2, Z2.
Implement the �eld GF

(
24

)
in maple using the two statements

G16 := GF(2,4,f(x)); u := G16[ConvertIn](x);

Or in Sage using the commands

x = polygen(GF(2)) # make x the variable of the polynomial field

f = x^100 + x + 1 # insert your favorite polynomial here

assert f.is_irreducible()

G16.<u> = GF(2**4, modulus=f) # u is the generator's name

Once this is done, write a small loop which prints out all the primitive elements (multiplicative
generators) in GF

(
24

)
. How many are there? The situation here is quite di�erent than that

of GF
(
25

)
. Brie�y explain why. (in maple use ConvertOut to get a canonical representation

of �eld elements, with higher degree momonials to the left)

Pick at random a 5 digit number a and a 6 digit number b that are relatively prime. Using
just Sage/Maple's mod command, run the Euclid gcd algorithm on your a and b. How many
mod steps did it take? Now run the extended gcd algorithm (again, employing just mod
operations) and compute the multiplicative inverse of a in Zb.
Remark: both Sage and Maple have a built-in command for extended gcd. Sage has xgcd,
taking a pair (x, y) and returning a triple (g, a, b) such that g = ax + by = gcd(x, y). Maple

has igcd, used as igcd(x,y,'a','b'), which returns g = gcd (x, y) and assigns a and b to the
values satisfying g = ax + by. You can use this to verify your mod computations.

3

