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» Given a document D and an author A, was D written by A?
» Why Verification?

» confidence — how sure are we in the results?

» Tunable rigidity — natural for open-world problems
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» Classification granularity <+ accuracy & confidence
» Generalize problem — improve original problem
» Native Language vs. Language Family Identification sca1a

» Stylometry-Based Security Applications

» High-level authentication & identification
» Active Authentication unsst1s, Fsat13, INst13, SFGT 14, FSAT 14]

» Open-world settings

» The true author may be missing from the set of candidates
» The Classify-Verify Algorithm soaci4,sa)
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Everyone has a “stylistic fingerprint”
Domain dominated by Al methods

» NLP for text quantification

» Machine learning for classification
Current state of supervised stylometry: pretty good!
Authorship Verification: Did A write D?

» Relatively unexplored
» Extremely relevant for security & online domains
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Background

Domain Problems

» Document D, documents D, author A, authors A

» Problems:
» Most common — closed-world, supervised: Who in A wrote D?
» Unsupervised: Segment D (or D) by authors
» Verification: Is D written by A?
» Baseline for other problems: mixed open/closed-world
stylometry, author profiling
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JStylo: an Authorship Attribution Framework

» Open-source Java authorship attribution research platform mactz
» Define problem — set features — set classifiers — analyze

» Used by Anonymouth for anonymizing documents
» Powered by JGAAP, Weka wuo, Hrrtog)
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» Generalization & problem relaxation with verification
» Definitions:

» L1: native language

» L2: non-native language

» LF:language family
» Problem: Given L2 text, what is the author’s L1(s)?

» L1-L2 transfer effect — LF-L2 transfer effect?
» Increase L1-ID via LF-ID?

> Yes — with verification + generalization
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Features: 4 sets, using syntax and idiosyncrasies
Classifier: SVM cross-validation, measured TPR
Method — correct L1-ID by LF-ID:

Apply L1-ID, measure chosen L1 probability p

Set confidence threshold t

If p > t: take chosen L1

Ifp<t
> Apply LF-ID by Standalone / Trivial / Random
» Reapply L1-ID only among languages in chosen LF
> Take chosen L1
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3.67%-6.43% increase in TPR using Standalone correction
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» Active Authentication

» The process of continuously verifying a user based on his/her
ongoing interaction with the computer

» Problem: Who is at the keyboard?

» Using real-time stylometric sensors
» High-paced decision making
» Natural for verification: doubting the user in front of us
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Corpus: Active Linguistic Authentication Dataset s+
Features: variation of Writeprints icos

» Track special keys: backspace (g3), shift (o)...

> Apply them: chfBSCchffhicago = Chicago
Classifier: SVM trained on 67 users
Method

> Initial day/#words-based windows, 14 users: 88—93% accuracy
» Here: time-based overlapping sliding windows

» Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)

» minimum characters/window: 100, 200, ..., 1000

» Goal: use in multi-modal systems
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30-second windows, 10-seconds overlap:

win#4: 30-60
win#3: 20-50
win#2: 10-40

win#5: 50-80
win#5: 40-70
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Availability by minimum char thresholds:

» Larger window = higher decision availability

» Windows <

Available windows out of total (%)

5 mins — not very useful
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Minimum characters per window
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False Accept Rate

Average FAR/FRR:

» Strict sensors
» Larger window = less affected by char/win thresholds

FAR
Window Size FRR
03 Window Size
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» The web is full of anonymous communication
» Can use stylometry to deanonymize it

» Pseudonymous documents published on the web:
» Virtually co suspects
» Or lack of training data

» = problem for:

» Analysts: confidence in suspect pool
» Users: may be falsely accused of authorship
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Motivation — Contd.

» The Classify-Verify problem: mixed open/closed-world

» Closed set of candidate authors
» Take into account that the author may not be in the set

» = Classify-Verify algorithm: classification + binary verification

> Intercepts misclassifications

» Tunable rigidity — FAR/FRR

» Performs better than traditional stylometry
Closed-world & open-world

Different domains and scales

Adversarial settings

Active authentication settings
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» p = Pr[Ap € AJ: probability D’s author is a candidate

» = The Classify-Verify Problem:
» Find D’s author in A or determine Ap € A
> Optional: given p
» Notations:

» in-set: documents whose author is a candidate (= p)
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Conclusion

Problems in Closed-World Models

» Closed-world models applied in open-world settings:

Classifier always outputs an author

» Chosen author is merely least-worst choice
» Absence of true author from pool is unknown

» Extremely relevant for stylometry in online domains
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» Brennan-Greenstadt Adversarial Corpus (EBG) a2

» 45 authors, > 6500 words each
» Adversarial documents: deliberate style change

» ICWSM 2009 Spinn3r Blog dataset @sos

» 44M blogs, previously used for web-scale stylometry
» Using 2 subsets, > 7500 words per author

» BLOGg : 50 authors, used as control to avoid overfitting on EBG
> BLOG; : 911 authors, used for large-scale evaluation

» Active Linguistic Authentication Dataset (AAUTH) wnus*1a
» 67 users, continuous keyboard input stream
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» Tested several feature sets
» Writeprints — extensive feature set
Lexical, syntactic, content, grammar, idiosyncrasies...
» k € {50, ...,1000} most common n € {1, ...,5}-grams
(k, n)-chars, (k, n)-words
» (500, 2)-chars wins
Best F1-score on EBG & BLOGs
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Abstaining classifier: refrain when not sure
Closed-world classifier + verifier — open-world

Output range: A — AU{ L}
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Classify-Verify

v

Abstaining classifier: refrain when not sure
Closed-world classifier + verifier — open-world
Output range: A — AU{ L}
» | = “unknown”
Manual/automatically set verification threshold ¢
Aim to maximize F1-scores for some expected in-set % = p

» p in-set documents
» 1 — p not-in-set documents

v

v

v
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Classify: Closed-World Setup

» Authorship Attribution: which A € A wrote D?
» SMO SVM as underlying classifier for the “Classify” phase
» Also used to establish “classify-only” baseline
» How closed-world classifiers perform in open-world? (not good...)
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» Naive #1: reduce to 1-vs-all modeling not-A
» Naive #2: cross validate A vs D & test distinguishability

» Verification methods:

» Classifier-induced: based on closed-world classifier outputs
Py, P1-P»-Diff, Gap-Conf

» Standalone: models built using A’s training data only
vV, V,, V2

» Also used to establish “verify-only” baseline
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Conclusion

Classify-Verify — Threshold Selection

» Oracle: manually-set for best performance on test data
» p-Induced: t set empirically over training set
» to maximize F1-scores for p
» Robust: t set empirically over training set
» to maximize expected F1-scores overallp € 0.1,0.2,...,1.0
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