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Introduction

I Stylometry: The study of linguistic style
I Applied to authorship attribution: Who wrote this document?

I Authorship Verification:
I Given a document D and an author A, was D written by A?

I Why Verification?
I confidence – how sure are we in the results?
I Tunable rigidity – natural for open-world problems
I Verification can improve classification
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Introduction – Contd.

Authorship verification Research:
I Generalization & Problem Relaxation for Improved Classification

I Classification granularity↔ accuracy & confidence
I Generalize problem→ improve original problem
I Native Language vs. Language Family Identification [SCG13]

I Stylometry-Based Security Applications
I High-level authentication & identification
I Active Authentication [JNJS+13, FSA+13, JNS+13, SFG+14, FSA+14]

I Open-world settings
I The true author may be missing from the set of candidates
I The Classify-Verify Algorithm [SOAG14, SG]
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Stylometry

I Authorship attribution using linguistic style learned from text
I Everyone has a “stylistic fingerprint”
I Domain dominated by AI methods

I NLP for text quantification
I Machine learning for classification

I Current state of supervised stylometry: pretty good!
I Authorship Verification: Did A write D?

I Relatively unexplored
I Extremely relevant for security & online domains
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Domain Problems

I Document D, documents D, author A, authors A
I Problems:

I Most common – closed-world, supervised: Who in A wrote D?
I Unsupervised: Segment D (or D) by authors
I Verification: Is D written by A?

I Baseline for other problems: mixed open/closed-world
stylometry, author profiling
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JStylo: an Authorship Attribution Framework

I Open-source Java authorship attribution research platform [MAC+12]

I Define problem→ set features→ set classifiers→ analyze
I Used by Anonymouth for anonymizing documents
I Powered by JGAAP, Weka [Juo, HFH+09]
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Native Language Identification

I Generalization & problem relaxation with verification
I Definitions:

I L1: native language
I L2: non-native language
I LF: language family

I Problem: Given L2 text, what is the author’s L1(s)?
I L1-L2 transfer effect→ LF-L2 transfer effect?
I Increase L1-ID via LF-ID?

I Yes – with verification + generalization
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Native Language Identification – Method

I Corpus: 11 L1s of 3 LFs from ICLEv2
I Features: 4 sets, using syntax and idiosyncrasies
I Classifier: SVM cross-validation, measured TPR
I Method – correct L1-ID by LF-ID:

I Apply L1-ID, measure chosen L1 probability p
I Set confidence threshold t
I If p ≥ t : take chosen L1
I If p < t :

I Apply LF-ID by Standalone / Trivial / Random
I Reapply L1-ID only among languages in chosen LF
I Take chosen L1
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Native Language Identification – Eval
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3.67%-6.43% increase in TPR using Standalone correction
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Active Authentication

I Stylometry-based security application
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Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

I Corpus: Active Linguistic Authentication Dataset [JNJS+13]

I Features: variation of Writeprints [AC08]

I Track special keys: backspace (β), shift (σ)...
I Apply them: chββCchββhicago⇒ Chicago

I Classifier: SVM trained on 67 users
I Method

I Initial day/#words-based windows, 14 users: 88–93% accuracy
I Here: time-based overlapping sliding windows

I Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
I minimum characters/window: 100, 200, ..., 1000

I Goal: use in multi-modal systems

Ariel Stolerman Authorship Verification 16/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Method

 

...ununited american sainβσroosevltmorris σtrinity71σ... User stream: 

0 5 10 15 20 25 30 35 40 45 50 55 60 
Time (secs): 

win#1: 0-30 
win#2: 10-40 

win#3: 20-50 
win#4: 30-60 

win#5: 40-70 

win#5: 50-80 30-second windows, 10-seconds overlap: 

Ariel Stolerman Authorship Verification 17/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Problem
Methodology
Evaluation

Active Authentication – Eval

Availability by minimum char thresholds:

I Larger window⇒ higher decision availability
I Windows < 5 mins – not very useful
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Average FAR/FRR:

I Strict sensors
I Larger window⇒ less affected by char/win thresholds
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Motivation – Contd.

I The web is full of anonymous communication
I Can use stylometry to deanonymize it

I Pseudonymous documents published on the web:
I Virtually∞ suspects
I Or lack of training data

I ⇒ problem for:
I Analysts: confidence in suspect pool
I Users: may be falsely accused of authorship
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I The Classify-Verify problem: mixed open/closed-world
I Closed set of candidate authors
I Take into account that the author may not be in the set

I ⇒ Classify-Verify algorithm: classification + binary verification
I Intercepts misclassifications
I Tunable rigidity – FAR/FRR
I Performs better than traditional stylometry

I Closed-world & open-world
I Different domains and scales
I Adversarial settings
I Active authentication settings
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Problem Statement

I Problem building blocks – recap:
I D: document of unknown authorship
I A = {A1, ...,An}: set of candidate authors
I p = Pr [AD ∈ A]: probability D’s author is a candidate

I ⇒ The Classify-Verify Problem:
I Find D’s author in A or determine AD 6∈ A

I Optional: given p

I Notations:
I in-set : documents whose author is a candidate (= p)
I not-in-set : documents whose author is missing (= 1− p)
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I Optional: given p

I Notations:
I in-set : documents whose author is a candidate (= p)
I not-in-set : documents whose author is missing (= 1− p)
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Problems in Closed-World Models

I Closed-world models applied in open-world settings:
Classifier always outputs an author

I Chosen author is merely least-worst choice
I Absence of true author from pool is unknown

I Extremely relevant for stylometry in online domains

Ariel Stolerman Authorship Verification 25/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Motivation
Background
Corpora
Methodology
Evaluation
Conclusion

Problems in Closed-World Models

I Closed-world models applied in open-world settings:
Classifier always outputs an author

I Chosen author is merely least-worst choice
I Absence of true author from pool is unknown

I Extremely relevant for stylometry in online domains

Ariel Stolerman Authorship Verification 25/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Motivation
Background
Corpora
Methodology
Evaluation
Conclusion

Problems in Closed-World Models

I Closed-world models applied in open-world settings:
Classifier always outputs an author

I Chosen author is merely least-worst choice
I Absence of true author from pool is unknown

I Extremely relevant for stylometry in online domains

Ariel Stolerman Authorship Verification 25/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Motivation
Background
Corpora
Methodology
Evaluation
Conclusion

Problems in Closed-World Models

I Closed-world models applied in open-world settings:
Classifier always outputs an author

I Chosen author is merely least-worst choice
I Absence of true author from pool is unknown

I Extremely relevant for stylometry in online domains

Ariel Stolerman Authorship Verification 25/56



Introduction
Background

Native Language Identification
Active Authentication

Classify-Verify
Summary

Motivation
Background
Corpora
Methodology
Evaluation
Conclusion

Corpora

I Brennan-Greenstadt Adversarial Corpus (EBG) [BAG12]

I 45 authors, > 6500 words each
I Adversarial documents: deliberate style change

I ICWSM 2009 Spinn3r Blog dataset [BJS09]

I 44M blogs, previously used for web-scale stylometry
I Using 2 subsets, > 7500 words per author

I BLOGS : 50 authors, used as control to avoid overfitting on EBG
I BLOGL : 911 authors, used for large-scale evaluation

I Active Linguistic Authentication Dataset (AAUTH) [JNJS+13]

I 67 users, continuous keyboard input stream
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Feature Set

I Tested several feature sets
I Writeprints – extensive feature set

Lexical, syntactic, content, grammar, idiosyncrasies...
I k ∈ {50, ..., 1000} most common n ∈ {1, ..., 5}-grams
〈k , n〉-chars, 〈k , n〉-words

I 〈500, 2〉-chars wins
Best F1-score on EBG & BLOGS
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Classify-Verify

I Abstaining classifier: refrain when not sure
I Closed-world classifier + verifier→ open-world
I Output range: A → A∪{⊥}

I ⊥ = “unknown”
I Manual/automatically set verification threshold t
I Aim to maximize F1-scores for some expected in-set % = p

I p in-set documents
I 1− p not-in-set documents
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Classify : Closed-World Setup

I Authorship Attribution: which A ∈ A wrote D?
I SMO SVM as underlying classifier for the “Classify” phase
I Also used to establish “classify-only” baseline

I How closed-world classifiers perform in open-world? (not good...)
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Verify : Open-World Setup

I Authorship Verification: is D written by A?
I Naiv̈e #1: reduce to 1-vs-all modeling not-A
I Naiv̈e #2: cross validate A vs D & test distinguishability

I Verification methods:
I Classifier-induced: based on closed-world classifier outputs

P1, P1-P2-Diff , Gap-Conf
I Standalone: models built using A’s training data only

V , Vσ, V a
σ

I Also used to establish “verify-only” baseline
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Classify-Verify – Threshold Selection

I Oracle: manually-set for best performance on test data
I p-Induced: t set empirically over training set

I to maximize F1-scores for p
I Robust: t set empirically over training set

I to maximize expected F1-scores over all p ∈ 0.1, 0.2, ..., 1.0
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Evaluation Methodology

I n-fold cross-validation
I EBG adversarial: classify attack docs (⊥ =attack)

I Baselines
I Only closed-world classifiers
I Only binary (standalone) verifiers

I Varying p: proportion/probability of in-set documents
I 10%, 20%, ... → 100% (pure closed-world)
I 10 experiments, in each only p × n authors are trained on

I Flexible vs. Strict Evaluation:
I Flexible : count all thwarted misclassifications as true
I Strict : count only not-in-set thwarted misclassification as true

I Measure F1-score: precision↔ recall
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I Strict : count only not-in-set thwarted misclassification as true

I Measure F1-score: precision↔ recall
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Results: EBG/BLOGS

Classify-Verify outperforms closed-world classifiers alone
I Using oracle thresholds
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Results: EBG/BLOGS– p-Induced Thresholds

Classify-Verify outperforms closed-world classifiers alone
I Using p-induced thresholds as well – similar to oracle
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Results: EBG/BLOGS– Robust Thresholds

Classify-Verify outperforms closed-world classifiers alone
I Using Robust thresholds for most in-set scenarios, without knowing p!
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Results: EBG Adversarial Settings

Classify-Verify successfully thwarts most attacks
I Even if thresholds not set to hold-off attacks

Thresholds for Best Results on Attack Data p-Induced Thresholds from Non-Attack Data 
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Results: BLOGL

Classify-Verify outperforms closed-world models on large-scale
datasets
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Results: AAUTH
Classify-Verify outperforms closed-world models in active
authentication settings

I For 5, 10, 20, 30-minute windows with 1-minute decision frequency
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Classify-Verify – Conclusion

I Classify-Verify is effective in open-world settings
I Also more effective in closed-world settings
I Automatic threshold selection performs well w/ or w/o knowing p

I Effective in thwarting attacks
I Even without special “defensive” configuration

I Effective in large-scale, open-world domain datasets
I Effective in dynamic, noisy active authentication settings
I ⇒ Classify-Verify is preferable over closed-world classifiers

almost always
I Essential tool for analysis of open-world and closed-world problems
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Summary

I Increase in online discourse, pools of authors, countermeasures
against stylometry

I Necessitates robust, open-world stylometric methods
I Authorship verification – useful approach for security &

open-world applications
I Problem relaxation→ improve classification (LFID)
I High-level security applications (Active Authentication)
I Open-world problems (the Classify-Verify algorithm)

I Verification-infused classification – shown effective in improving
closed-world classifiers alone
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Directions for Future Authorship Verification Research

I Expand and elevate authorship verification research as a
preferred approach for stylometry

I Integrating binary verification with closed-world classification
I Expanding empirical foundations of verification evaluation
I Fusion of verification methods
I Verification used for security and privacy
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Thank You

Thank You!
Contact: stolerman@cs.drexel.edu

The Privacy Security & Automation Lab @ Drexel: http://psal.cs.drexel.edu/
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Alex Fridman, Ariel Stolerman, Sayandeep Acharya, Patrick Brennan, Patrick Juola, Rachel Greenstadt, and Moshe Kam.

Decision fusion for multimodal active authentication.
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Multi-modal decision fusion for continuous authentication.
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For Further Reading II

Patrick Juola, John Noecker Jr., Ariel Stolerman, Michael V. Ryan, Patrick Brennan, and Rachel Greenstadt.

A dataset for active linguistic authentication.
In Proceedings of the Ninth Annual IFIP WG 11.9 International Conference on Digital Forensics, Orlando, Florida, USA, January
2013. National Center for Forensic Science.

Patrick Juola, John I. Noecker, Ariel Stolerman, Michael V. Ryan, Patrick Brennan, and Rachel Greenstadt.

Keyboard-behavior-based authentication.
IT Professional, 15(4):8–11, 2013.

P. Juola.

Jgaap, a java-based, modular, program for textual analysis, text categorization, and authorship attribution.

Andrew McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman, and Rachel Greenstadt.

Use fewer instances of the letter "i": Toward writing style anonymization.
In Privacy Enhancing Technologies Symposium (PETS), 2012.

John Noecker Jr. and Michael Ryan.

Distractorless authorship verification.
In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, May
2012. European Language Resources Association (ELRA).

Ariel Stolerman, Aylin Caliskan, and Rachel Greenstadt.
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For Further Reading III

Ariel Stolerman, Alex Fridman, Rachel Greenstadt, Patrick Brennan, and Patrick Juola.

Active linguistic authentication revisited: Real-time stylometric evaluation towards multi-modal decision fusion.
In The Tenth Annual IFIP WG 11.9 International Conference on Digital Forensics, January 2014.

Ariel Stolerman and Rachel Greenstadt.

Mixed closed-world and open-world authorship attribution.
IEEE Transactions on Information Forensics and Security [under submission].

Ariel Stolerman, Rebekah Overdorf, Sadia Afroz, and Rachel Greenstadt.

Classify, but verify: Breaking the closed-world assumption in stylometric authorship attribution.
In The Tenth Annual IFIP WG 11.9 International Conference on Digital Forensics, January 2014.
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JStylo: Authorship Attribution Framework
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Classifier-Induced Verification

I Confidence in given solution by distance-based classifiers
I Classify→ set threshold→ test
I Consider P1 ≥ P2 ≥ ... ≥ Pn for Ai ∈ A:

I P1 : classifier’s probability for chosen author
I P1-P2-Diff : diff b/w probabilities of top and 2nd -to-top authors
I Gap-Conf : like P1-P2-Diff , using n 1-vs-all classifiers
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Standalone Verification

I V : Distractorless Verification [NJR12]

I Standardize char-case & whitespaces, extract word/char n-grams
I Author model M = 〈m1,m2, ...,mn〉
I Document model F = 〈f1, f2, ..., fn〉
I Test: δ(M,F ) < t?

I Variants:
I Tighten bound for less varied authors, widen for “looser” ones
I Vσ : per-feature SD normalization
I V a : account for A’s avg. pairwise document distances
I Evaluation w/ 10-fold CV + 〈500, 2〉-chars
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Standalone Verification – Contd.

I ROC curves: no method is strictly preferred over the other
I EBG (left): Vσ wins, Blog (right): V wins
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Results: EBG/BLOGS

Classify-Verify outperforms closed-world classifier and open-world
verifiers alone

I Using oracle thresholds
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Results: EBG/BLOGS– p-Induced Thresholds
Classify-Verify outperforms closed-world classifier and open-world
verifiers alone

I Using p-induced thresholds as well – similar to oracle
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Results: EBG/BLOGS– Robust Thresholds
Classify-Verify outperforms closed-world classifier and open-world
verifiers alone

I Using Robust thresholds for most in-set scenarios, without knowing p!
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Results: AAUTH
Classify-Verify outperforms closed-world models in active
authentication settings

I For 5, 10, 20, 30-minute windows with 1-minute decision frequency
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