

Motivation

- The web is full of anonymous communication that was never meant to be analyzed for authorship attribution
- Stylometry is a form of authorship attribution that relies on the linguistic information found in a document
- Stylometry research has thus far focused on closed-world models, limited to a set of known suspect authors
- Often the closed-world assumption is broken, requiring a solution for forensic analysts and Internet activists who wish to remain anonymous

Contribution and Application to Security & Privacy

- The Classify-Verify method An abstaining classification approach that augments authorship classification with a verification step
- Performs well in open-world problems with similar accuracy as traditional methods in closed-world problems
- Improves closed-world solutions by replacing misclassifications with "unknown"
- Performs well in adversarial settings where traditional methods fail without the need to train on adversarial data

The Sigma Verification method

An extension of the distractorless verification method [Noecker & Ryan, LREC'12] for author-document distance measurement

- Incorporates pairwise distances within the author's documents
- Normalizes over the standard deviations of the author's features

Security & Privacy Applications

- Useful when the target class may absent from the suspect set: Authorship Attribution/Verification (this work)
- Website fingerprinting
- Malware family identification

Problem Statement

Definitions:

- D document of unknown authorship
- A candidate author
- $\blacktriangleright A = \{A_1, ..., A_n\}$ set of candidate authors
- ▶ $p = Pr[A_D \in A]$ the probability that *D*'s author is in the set of candidates \mathcal{A} , denoted the *in-set* prob. (1 - p is the not-in-set prob.)
- t verification acceptance threshold

Problems:

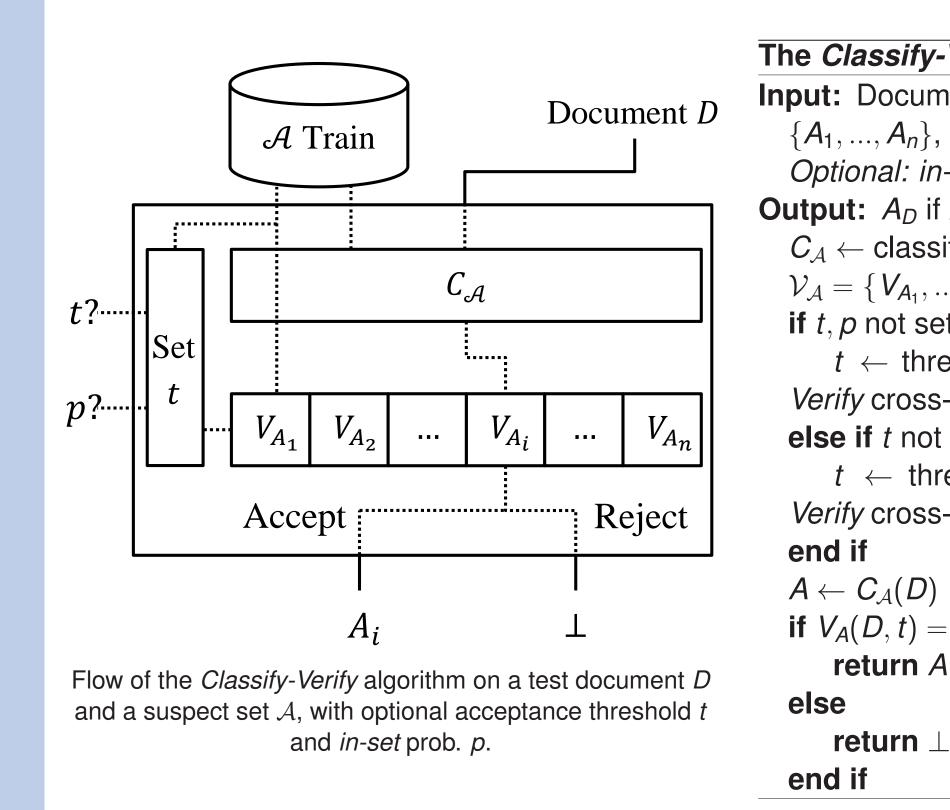
- Authorship Attribution: Which $A \in A$ is the author of D?
- Authorship Verification: is D written by A?
- The *Classify-Verify* Problem: given D, A and optionally p: • Determine the author $A \in \mathcal{A}$ of D, or
- Determine that D's author is not in \mathcal{A} (w.r.t. acceptance threshold t)

Classify, but Verify Breaking the Closed-World Assumption in Stylometric Authorship Attribution

Ariel Stolerman Rebekah Overdorf Sadia Afroz Rachel Greenstadt The Privacy, Security and Automation Lab, Drexel University

USENIX Security, August 14-16, 2013

Classify-Verify



Synopsis:

- Frain one closed-world classifier C_A over A and n verifiers^{†‡} $V_1, ..., V_n$ for each $A_i \in A$
- ► Classify *D* using C_A , and let the result be author A_i
- Verify D using V_i
- ▶ If it accepts, return the author A_i
- Otherwise, return \perp , which stands for "none"

†Verification Methods

Classifier-Induced Verifiers

- Let P_i denote the *i*th order statistic of the probability outputs of $C_{\mathcal{A}}(D)$, then:
- P_1 : probability of the chosen class
- $P_1 P_2 Diff$: difference between chosen and second-to-chosen class probabilities
- Gap-Conf [Paskov, MIT 2010] : $P_1 P_2$ -Diff based on n 1-vs-all classifiers
- Standalone Verifiers *

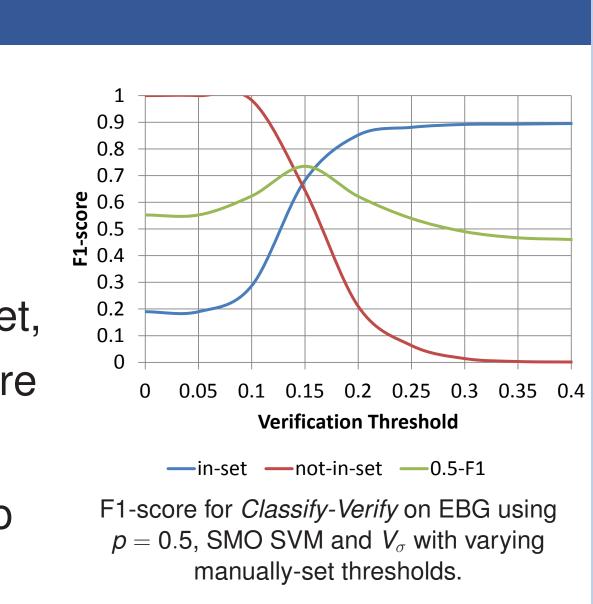
distractorless or Sigma verification

‡Verification Acceptance Threshold t

- Manual: acceptance threshold t set manually
- p-induced threshold: t is set empirically using cross-validation over the training set, to maximize the target evaluation measure μ (e.g. F1-score) for given *in-set* prob. *p*
- P-Robust: t is set like in p-induced, but to maximize the *average* μ across any *p*

The Classify-Verify Algorithm

Input: Document *D*, suspect author set A = $\{A_1, ..., A_n\}$, target measure to maximize μ *Optional: in-set* prob. *p*, manual threshold *t* **Output:** A_D if $A_D \in A$, and \perp otherwise $C_A \leftarrow \text{classifier trained on } \mathcal{A}$ $\mathcal{V}_{\mathcal{A}} = \{V_{\mathcal{A}_1}, ..., V_{\mathcal{A}_n}\} \leftarrow \text{verifiers trained on } \mathcal{A}$ if t, p not set then $t \leftarrow$ threshold maximizing *p*- μ_B of *Classify*-*Verify* cross-validation on \mathcal{A} else if t not set then $t \leftarrow$ threshold maximizing p- μ of Classify-*Verify* cross-validation on \mathcal{A} if $V_A(D, t) = True$ then return A

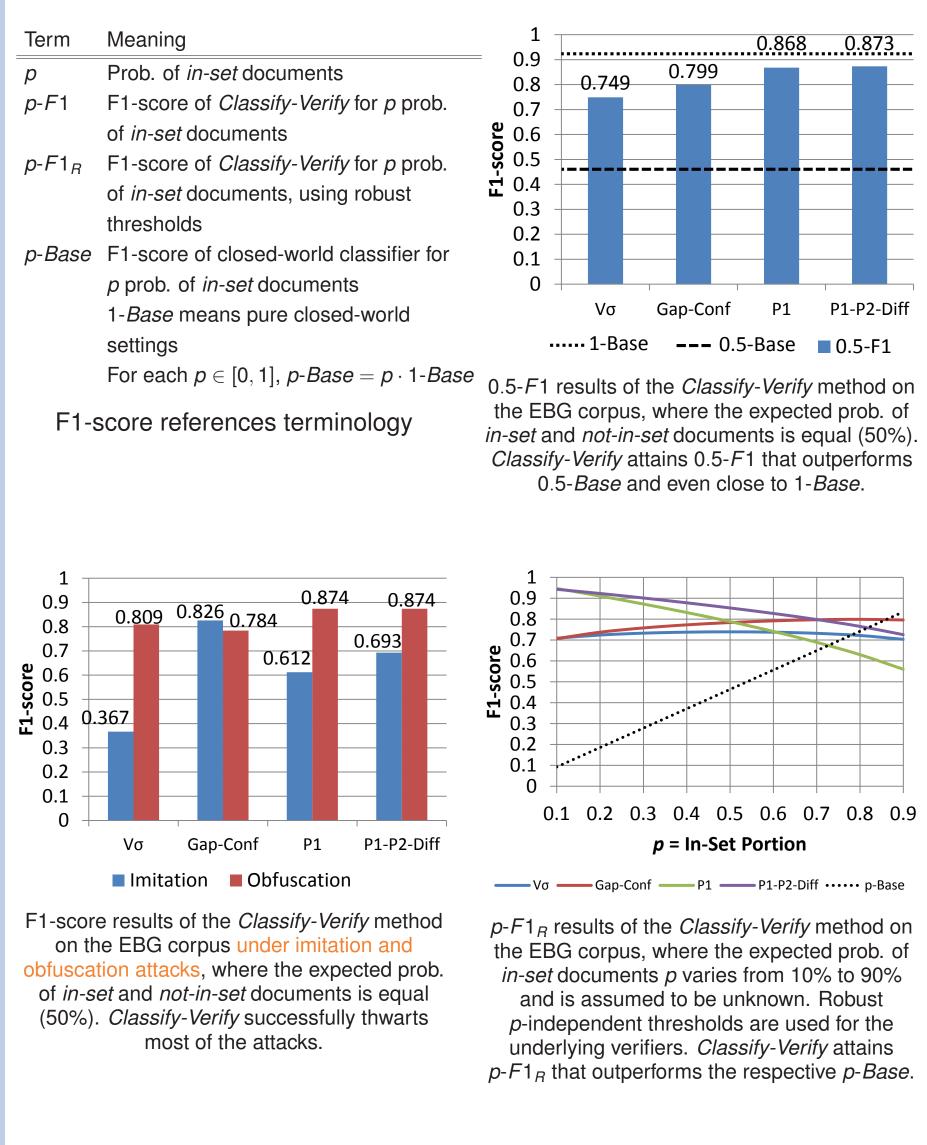


Evaluation & Results

► Corpora:

- Inf. Syst. Secur.'12], 45 authors
- Closed-world classifier: SVM SMO

Results:



* Distractorless & Sigma Verification

Distractorless – V [Noecker & Ryan, LREC'12] : verification based on vector distance between A's centroid \mathbb{A} and D, using cosine distance:

(V_{σ}) and per-author threshold (V^{a}) normalization

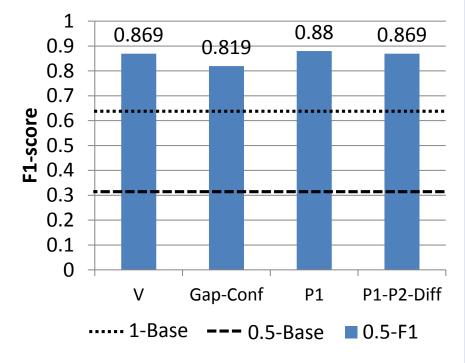
	Distance \Test	$\delta < t$	δ -
	$\delta_{D,A} = \Delta(D_i, \mathbb{A}_i)_{i=1}^n$	V	
	$\delta^{\sigma}_{D,A} = \Delta(\frac{D_i}{\sigma(A)_i}, \frac{\mathbb{A}_i}{\sigma(A)_i})_{i=1}^n$	V_{σ}	
Differences in distance calculation and <i>t</i> -thresh			

calculation and *t*-threshold test for V_{σ} and V^{a} .

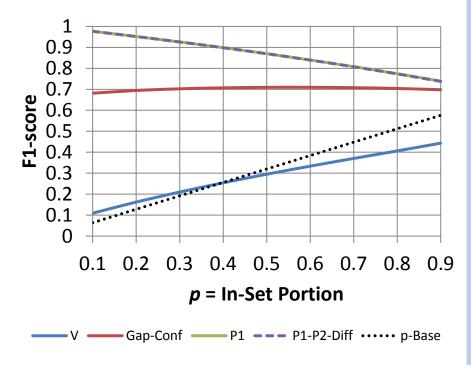
EBG: The Extended-Brennan-Greenstadt Adversarial corpus [Brennan et al., ACM Trans.]

► Blog: The ICWSM 2009 Spinn3r Blog dataset [Burton et al., ICWSM'09], 50 authors

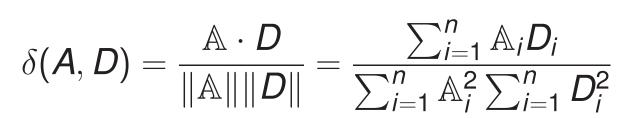
Feature set: 500 most common character bigrams



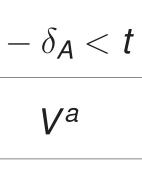
0.5-F1 results of the Classify-Verify method on the blog corpus, where the expected prob. of in-set and not-in-set documents is equal (50%) Classify-Verify attains 0.5-F1 that outperforms both 0.5-Base and 1-Base.

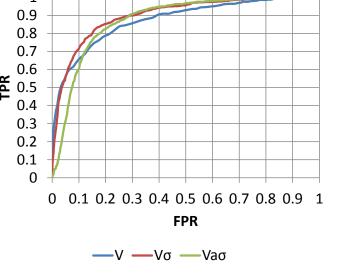


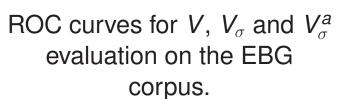
p-*F*1_{*R*} results of the *Classify-Verify* method on the blog corpus, where the expected prob. of *in-set* documents *p* varies from 10% to 90% and is assumed to be unknown. Robust *p*-independent thresholds are used for the underlying verifiers. Classify-Verify attains $p-F1_{B}$ that outperforms the respective p-Base.

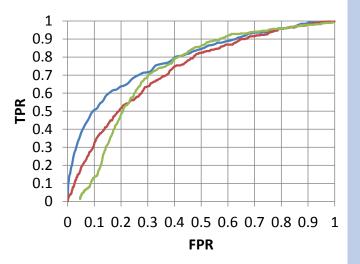


Sigma – V_{σ}^{a} : enhances distractorless verification with per-feature SD









—V —Vσ —Vaσ ROC curves for V, V_{σ} and V_{σ}^{a} evaluation on the blog corpus