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Abstract

Forensic stylometry is a form of authorship
attribution that relies on the linguistic infor-
mation found in a document. While there
has been significant work in stylometry, most
research focuses on the closed-world problem
where the document’s author is in a known
suspect set. For open-world problems where
the author may not be in the suspect set,
traditional methods used in classification are
ineffective. We propose the Classify-Verify
method, that augments classification with a bi-
nary verification step, evaluated on stylomet-

ric datasets, but can be generalized to any
domain. We suggest augmentations to an
existing distance-based authorship verification
method, by adding per-feature standard devia-
tions and per-author threshold normalization.
The Classify-Verify method significantly out-
performs traditional classifiers in open-world
settings (p-val < 0.01) and attains F1-score of
0.87, comparable to traditional classifiers per-
formance in closed-world settings. Moreover,
Classify-Verify successfully detects adversarial
documents where authors deliberately change
their style, where closed-world classifiers fail.
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1 Introduction

The web is full of anonymous communication, with
high value for digital forensics. For this purpose,
forensic stylometry is used to analyze anonymous
communication in order to “de-anonymize” it. Clas-
sic stlyometric analysis requires an exact set of sus-
pects in order to perform reliable authorship attri-
bution, settings that are often not met in real world
problems. In this paper we break the closed-world
assumption and explore a novel method for forensic
stylometry that copes with the possibility that the
true author is not in the set of suspects.

Stylometry is a form of authorship recognition that
relies on the linguistic information found in a doc-
ument. While stylometry existed before computers
and artificial intelligence, the field is currently domi-
nated by AI techniques such as neural networks and
statistical pattern recognition. State-of-the-art sty-
lometry approaches can identify individuals in sets
of 50 authors with over 90% accuracy (Abbasi and
Chen, 2008), and even scaled to over 100,000 au-
thors (Narayanan et al., 2012). Stylometry is cur-
rently used in intelligence analysis and forensics, with
increasing interest for digital communication analy-
sis (Wayman et al., 2009). The 2009 Technology As-
sessment for the State of the Art Biometrics Excel-
lence Roadmap (SABER) commissioned by the FBI
stated that, “As non-handwritten communications
become more prevalent, such as blogging, text mes-
saging and emails, there is a growing need to identify
writers not by their written script, but by analysis
of the typed content (Wayman et al., 2009).” With
the continuous increase in rigorousness, accuracy and
scale of stylometric techniques, law practitioners turn
to stylometry for forensic evidence (Chaski, 2013;
Juola, 2013), albeit considered controversial at times
and nontrivial to be admitted in court (Clark, 2011).

The effectiveness of stylometry has consider-
able implications for anonymous and pseudonymous
speech. Recent work has exposed limits on stylom-
etry through active circumvention (Brennan et al.,
2012; McDonald et al., 2012). Stylometry has thus
far focused on limited, closed-world models. In the
classic stylometry problem, there are relatively few
authors (usually fewer than 20, nearly always fewer
than 100), the set of possible authors is known, every
author has a large training set and all the text is from

the same genre. However, problems faced in the real
world often do not conform to these restrictions.

Controversial, pseudonymous documents that are
published on the Internet often have an unbounded
suspect list. Even if the list is known with cer-
tainty, training data may not exist for all suspects.
Nonetheless, classical stylometry requires a fixed list
and training data for each suspect, and an author
is always selected from this list. This is problem-
atic both for forensics analysts, as they have no way
of knowing when widening their suspect pool is re-
quired, and for Internet activists as well, who may
appear in these suspect lists and be falsely accused
of writing certain documents.

We explore a mixed closed-world and open-world
authorship attribution problem where we have a
known set of suspect authors, but with some prob-
ability (known or unknown) that the author we seek
is not in that set. The key contributions of this paper
are:

1) We present the Classify-Verify method.
This novel method augments authorship classification
with a verification step, and obtains similar accu-
racy on open-world problems as traditional classifiers
in closed-world problems. Even in the closed-world
case, Classify-Verify can improve results by replac-
ing wrongly identified authors with “unknown.” Our
method can be tuned to different levels of rigidity, to
achieve desired false positive and false negative er-
ror rates. However, it can be automatically tuned,
whether or not we know the expected proportion of
documents by authors in the suspect list versus those
that are absent.

2) Classify-Verify performs better in ad-
versarial settings than traditional classifica-
tion. Previous work has shown that traditional clas-
sification performs near random chance when faced
with writers who change their style. Classify-Verify
filters out most of the attacks in the Extended-
Brennan-Greenstadt Adversarial corpus (Brennan
et al., 2012), an improvement over previous work
which requires training on adversarial data for attack
detection (Afroz et al., 2012).

In addition we present the Sigma Verification
method. This method is based on Noecker and
Ryan’s (Noecker and Ryan, 2012) distractorless ver-
ification method, which measures distance between
an author and a document. Sigma Verification incor-
porates pairwise distances within the author’s doc-
uments and the standard deviations of the author’s
features, and although not proven to statistically out-



perform the distractorless method always, it is yet
shown as a better alternative suitable for datasets
with certain characteristics.

In Sec. 2 we present a formal definition of the
closed-world, open-world, verification, and classify-
verify problems. Sec. 3 contextualizes our contri-
bution in terms of related work. Sec. 4 describes
the datasets we worked with. In Sec. 5 and Sec. 6
we discuss the closed-world classification and binary
verification methodologies used later by our Classify-
Verify method, presented in Sec. 7. Sec. 8 presents
the evaluation of the Classify-Verify method on stan-
dard and adversarial datasets. We conclude with a
discussion of interesting results (Sec. 9), how Classify-
Verify can be applied in other security and privacy
domains and directions for future work (Sec. 10).

2 Problem Statement

2.1 Definitions

In order to understand the problem we explore in
this paper, first we describe the pure closed-world
and open-world stylometry problems.

The closed-world stylometry problem, namely au-
thorship attribution, is: given a document D of un-
known authorship and documents by a set of known
authors A = {A1, ..., An}, determine the author
Ai ∈ A of D. This problem assumes D’s author is
in A. The open-world stylometry problem is: given
a document D, identify who its author is. Author-
ship verification is a slightly relaxed version (yet very
hard): given a document D and an author A, deter-
mine whether D is written by A.

Finally, the problem we explore is a mixture of
the two above: given a document D of unknown au-
thorship and documents by a set of known authors
A, determine the author Ai ∈ A of D, or that D’s
author is not in A. This problem is similar to the
attribution problem, with the addition of the class
“unknown.” An extended definition also includes
p = Pr[AD ∈ A], the probability that D’s author
is in the set of candidates.

For the rest of the paper, we look at test documents
in two settings: when the authors of these documents
are in the set of suspects, denoted in-set, and when
these documents are by an author outside the suspect
set, denoted not-in-set.

2.2 Hypothetical Scenario

Consider Bob’s workplace which he shares with n−1
other employees, under the management of Alice.

Bob gets up to get a cup of coffee, and incautiously
forgets to lock his computer. When he returns to his
desk he discovers that a vicious (and sufficiently long)
email has been sent in his name to Alice! He quickly
goes to Alice in order to explain, and Alice decides
to check the authorship of the email to assert Bob’s
innocence (or refute it). Luckily Alice has access to
the company’s email database, so she can model the
writing style of her n employees. Unluckily, the secu-
rity guard at the door tends to doze off every once in
a while, resulting with unauthorized people wander-
ing off in the company’s halls, such that the portion
of authorized people in the office at any given time is
p.

A closed-world system would only be able to con-
sider the n employees and identify one of them as
the culprit. This would be problematic if the email
was written by one of the unauthorized entrants. A
Classify-Verify approach would be able to consider
this possibility.

2.3 Problems with Closed-World Models

Applying closed-world stylometry in open-world set-
tings suffers from a fundamental flaw: a closed-world
classifier will always output some author in the sus-
pect set. If it outputs an author, it merely means
the document in question is written in a style more
similar to that author’s style than the others’, and
the probability estimates of the classifier reflect only
who is the least-worst choice. Meanwhile, the ab-
sence of the document’s author from the set of sus-
pects remains unknown. If we relax the precision of
our results to k-accuracy (Narayanan et al., 2012),
i.e. target to narrow down our set of suspects to k
rather than just one, the problem will not be solved
– all k options will still be wrong.

This problem becomes prominent especially in on-
line domains, where the number of potential sus-
pects can be virtually unbounded. Failing to address
the limitations of closed-world models may result in
falsely attributed authors with consequences for both
the forensic analyst and the innocent Internet user.

3 Related Work

3.1 Open-World Classification

Open-world classification deals with scenarios in
which the set of classes is not known in advance. Ap-
proaches include unsupervised, semi-supervised and
abstaining classification. Unsupervised stylometry
clusters instances based on their feature vector dis-



tances (Abbasi and Chen, 2008; Koppel et al., 2011a).
Semi-supervised methods are proposed to identify
clusters (Sorio et al., 2010) which are later used in
supervised classification. Abstaining classifiers re-
frain from classification to improve the classifier’s re-
liability in certain situations, for example, to min-
imize misclassification rate by rejecting the results
when the classifier’s confidence is low (Pietraszek,
2005; Chow, 1970; Herbei and Wegkamp, 2006). The
Classify-Verify method is an abstaining classifier that
rejects/accepts an underlying classifier’s output using
a verification step based on the distances between the
test author and the predicted author. The primary
novelty of this work is that, unlike other stylometric
techniques, Classify-Verify considers the open-world
situation where the author may not be in the suspect
set.

Another way is to make a model of the closed-world
and reject everything that does not fit it. Although
approaches like this are criticized for network intru-
sion detection (Sommer and Paxson, 2010), in bio-
metric authentication systems distance-based meth-
ods for anomaly detection work well (Araujo et al.,
2005; Killourhy, 2012; Lee and Cho, 2007).

3.2 Authorship Classification

In authorship classification, one of the authors in a
fixed suspect set is attributed to the test document.
Current stylometry methods achieve over 80% accu-
racy with 100 authors (Abbasi and Chen, 2008), over
30% accuracy with 10,000 authors (Koppel et al.,
2011b), and over 20% precision with 100,000 au-
thors (Narayanan et al., 2012). None consider the
case where the true author is missing. Though sty-
lometric techniques for classification work well, they
can be easily circumvented by imitating another per-
son or deliberate obfuscation (Brennan and Green-
stadt, 2009).

3.3 Authorship Verification

In authorship verification we aim to determine
whether a document D is written by an author A
or not. This problem is harder than the closed-world
stylometry discussed above. Authorship verification
is essentially a one-class classification problem, on
which a reasonable amount of research is done, mostly
with support vector machines (Tax, 2001; Schölkopf
et al., 2001; Manevitz and Yousef, 2007). However,
little research is done in the domain of stylometry.

Most previous work addresses verification for pla-
giarism detection (van Halteren, 2004; Clough, 2000;

Meyer zu Eissen et al., 2007). The unmasking algo-
rithm (Koppel et al., 2007) is an example of a gen-
eral approach to verification, that relies on measuring
“depth-of-difference” between document and author
models. It reaches 99% accuracy with similar false
positive and false negative rates, however it is lim-
ited to tasks with large training data (Sanderson and
Guenter, 2006).

Noecker and Ryan (Noecker and Ryan, 2012)
propose the distractorless verification method, that
avoids using negative samples to model the class of
not the author. They use simplified feature sets con-
structed only of character or word n-grams, normal-
ized dot-product (cosine distance) and an acceptance
threshold. They evaluate their approach on two cor-
pora (Juola, 2004; Potthast et al., 2011), and report
up to 88% and 92% accuracy. Their work provides
a verification framework robust across different types
of writings (language, genre or length independent).
However, their results also suffer from low F-score
measurements (up to 47% and 51%), which suggest
a skew in the test data (testing more non-matching
document-author pairs than matching ones). A closer
look at this method along with error rates is given
in Sec. 6.2.

The main novelty of this work is in utilizing verifi-
cation for elevating closed-world attribution to open-
world, which, to the best of our knowledge, has not
been done before.

4 Corpora

We experiment with two corpora: the Extended-
Brennan-Greenstadt (EBG) Adversarial cor-
pus (Brennan et al., 2012) and the ICWSM 2009
Spinn3r Blog dataset (blog corpus) (Burton et al.,
2009).

The EBG corpus contains writings of 45 different
authors, with at least 6,500 words per author. It also
contains adversarial documents, where the authors
change their writings style either by hiding it (ob-
fuscation attack), or imitating another author (imi-
tation attack). Most of the evaluations in this paper
are done using the EBG corpus.

The Spinn3r blog corpus, provided by Spinn3r.com,
is a set of 44 million blog posts made between August
1st and October 1st, 2008. The posts include the text
as syndicated, as well as metadata such as the blog’s
homepage, timestamps, etc. This dataset has been
previously used in internet scale authorship attribu-
tion (Narayanan et al., 2012). We use a subcorpus
of 50 blogs with at least 7500 words as our blog cor-



pus. We use the blog corpus as control, evaluated
under the same settings as the EBG corpus, in order
to avoid overfitting configurations on the latter, and
generalize our conclusions.

5 Closed-World Setup

Throughout the paper we utilize a closed-world clas-
sifier, both for baseline results to evaluate differ-
ent methods, and as the underlying classifier for the
Classify-Verify method presented in section 7. We
use Weka’s (Hall et al., 2009) linear kernel sequential
minimal optimization support vector machine (Platt,
1998) (SMO SVM) with complexity parameter C =
1. SVMs are chosen due to their proven effectiveness
for stylometry (Juola, 2008), specifically for the EBG
corpus (Brennan et al., 2012).

In addition to the classifier selection, another im-
portant part of a stylometric analysis algorithm is
the feature set used to quantify the documents, prior
to learning and classification. The EBG corpus was
originally quantified using the Writeprints feature
set (Brennan et al., 2012), based on the Writeprints
algorithm (Abbasi and Chen, 2008), which is proven
accurate on high number of authors (over 90% ac-
curacy for 50 authors). Writeprints uses a complex
feature set that quantifies different linguistic levels
of the text, including lexical, syntactic, and content
related features (see original paper for details); how-
ever, for simplicity we choose to use a feature set
that consists only of one type of feature. We evalu-
ated the EBG corpus using 10-fold cross validation 1

with the k most common word n-grams or charac-
ter n-grams, with k from 50 to 1000 with steps of
50, and n from 1 to 5 with steps of 1. The most-
common feature selection heuristic is commonly used
in stylometry (Abbasi and Chen, 2008; Koppel and
Schler, 2004; Noecker and Ryan, 2012) to improve
performance and avoid over-fitting, as are the cho-
sen ranges of k and n. F1-score results for character
n-grams are illustrated in Fig. 1.

Of word and character n-grams, the latter out-
perform the first, with the best F1-score results at-
tained with character bigrams at ≈ 0.93 (for k = 400
and above), compared to the best score of 0.879 for
words, attained using n = 1 and k = 1000. Both
feature sets outperform the original EBG evaluation

1In k-fold cross validation the dataset is randomly di-
vided into k equally-sized subsets (folds), where each sub-
set is tested against models trained on the other subsets,
and the final result is the weighted average of all subset
results.
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Figure 1: F1-scores for evaluation of the EBG corpus
using different character n-grams with varying limits
of the feature set size.

with Writeprints at F1-score of 0.832 (Brennan et al.,
2012). Finally, we choose the 500 most common char-
acter bigrams as our feature set (at F1-score of 0.928),
denoted 〈500, 2〉-chars, used throughout all of our ex-
periments. It is chosen for its simplicity, performance
and effectiveness.

For control, we evaluated the effectiveness of us-
ing 〈500, 2〉-chars compared to using the Writeprints
feature set on the blog corpus, via 10-fold cross vali-
dation with an SMO SVM classifier. Although both
results were lower than those obtained for the EBG
corpus, 〈500, 2〉-chars outperformed Writeprints with
F1-score of 0.64 versus 0.509, respectively.

Feature extraction for all experiments in the paper
is done using the JStylo 2 and JGAAP 3 authorship
attribution frameworks API.

6 Verification

In authorship verification we aim to determine
whether a document D is written by an author A or
not, a problem for which two näıve approaches sug-
gest themselves. The first and most intuitive is to re-
duce the problem to closed-world settings by creating
a model for not-A (simply from documents not writ-
ten by A) and train a binary classifier. This method
suffers from a fundamental flaw, as if D is attributed
to A it merely means D’s style is less distant from
A than it is from not-A [however the opposite direc-

2https://github.com/psal
3http://evllabs.com/jgaap/w

https://github.com/psal
http://evllabs.com/jgaap/w


tion, when D is attributed to not-A, is useful (Kop-
pel et al., 2007)]. Another approach is to train a
binary model of D versus A, and test the model on
itself using cross-validation; if D is written by A, we
expect the accuracy to be close to random, due to
the indistinguishability of the models. However this
method does not work well, and requires D to contain
a substantial amount of text for cross-validation, an
uncommon privilege in real-world scenarios.

In the next sections we discuss and evaluate several
verification methods. The first family of methods is
classifier-induced verifiers, which require an underly-
ing (closed-world) classifier and utilize its class prob-
abilities output for verification.

The second family of methods is standalone veri-
fiers, which rely on a model built using author train-
ing data, independent of other authors or classifiers.
We evaluate two verification methods: the first is
the distractorless verification method, denoted V , de-
veloped by Noecker and Ryan (Noecker and Ryan,
2012). It is presented as a baseline as it is a straight
forward verification method, proven robust across dif-
ferent domains, and does not use a distractor set
(model of “not-A”). Then we present the novel Sigma
Verification method, which applies adjustments to V
for increased accuracy: adding per-feature standard
deviations normalization (denoted Vσ) and adding
per-author threshold normalization (denoted V a; the
method with both adjustments combined is denoted
V aσ ). Finally, we evaluate and compare V with its
new variants.

6.1 Classifier-Induced Verification

One promising aspect of the closed-world model that
can be used in open-world scenarios is the confidence
in the solution given by distance-based classifiers. A
higher confidence in an author may, naturally, indi-
cate that the author is in the suspect set while a lower
confidence may indicate that he is not and that this
problem is, in fact, an open-world situation.

Following classification, verification can be formu-
lated simply by setting an acceptance threshold t,
measure the confidence of the classifier in its classifi-
cation, and accept the classification if and only if it
is above t.

Next we discuss several verification schemes, based
on classification probabilities outputted by closed-
world classifiers. For each test document D with
suspect authors A = {A1, ..., An}, a classifier pro-
duces a list of probabilities PAi

which is, accord-
ing to the classifier, the probability D is written by

Ai (
∑n
i=1 PAi

= 1). We denote the probabilities
P1, ..., Pn as the reverse order statistic of PAi

, i.e. P1

is the highest probability given to some author (the
chosen author), P2 the second highest and so on.

These methods are obviously limited to classify-
verify scenarios, as verification is dependent on clas-
sification results (thus they are not evaluated in this
section, but rather in Sec. 8 as part of the Classify-
Verify evaluation). For this purpose, and in order
to extract the probability measurements required by
the following methods, we use SMO SVM classifiers
with the 〈500, 2〉-chars feature set for all of our ex-
periments in Sec. 8. We fit logistic regression models
to the SVM outputs for proper probability estimates.
The classifier-induced verification methods we evalu-
ate are the following:

1) P1: The first measurement we look at is sim-
ply the classifier’s probability output for the chosen
author, namely P1. The hypothesis behind this mea-
surement is that as the likelihood the top author is
the true author increases, relative to all others, so
does its corresponding probability.

2) P1-P2-Diff : Another measurement we consider
is the difference between the classifier’s probability
outputs of the chosen and second-to-chosen authors,
i.e. P1 − P2, denoted as the P1-P2-Diff method.

3) Gap-Conf : The last classifier-induced method
we consider is the gap confidence (Paskov, 2010).
Here we do not train one SVM classifier; instead, for
all n authors, we train corresponding n one-versus-
all SVMs. For a given document D, each classifier
i in turn produces 2 probabilities: the probability
that D is written by Ai and the probability it is not
(i.e. the probability it is written by an author other
than Ai). For each i, denote the probability that D is
written by Ai as pi(Yes|D); then the gap confidence is
the difference between the highest and second-highest
pi(Yes|D), which we denote briefly as Gap-Conf . The
hypothesis is similar to P1-P2-Diff : the probability
of the true author should be much higher than that
of the second-best choice.

6.2 Standalone Verification

6.2.1 V : Distractorless Verification

In this section we describe the Distractorless ver-
ification method, denoted V , proposed by Noecker
and Ryan (Noecker and Ryan, 2012). As discussed
in Sec. 3, V uses straight-forward distance combined
with a threshold: set an acceptance threshold t,
model document D and author A as feature vectors,
measure the distance between them, and determine



D is written by A if it is below t.
The algorithm begins with preprocessing of the

documents (D and A’s), in which whitespaces and
character case are standardized. The authors use
character n-grams and word n-grams as feature sets,
extracted using a sliding window technique, due to
their known high performance in stylometry, simplic-
ity, fast calculation and robustness against errors that
are found in more complex feature extractors, like
part-of-speech taggers. Let n denote the size of the
chosen feature set.

Next, a model M = 〈m1,m2, ...,mn〉 is built from
the centroid of the feature vectors of A’s documents.
For each i, mi is the average relative frequency of fea-
ture i across A’s documents, where relative frequency
is used to eliminate document length variation effect.
In addition, a feature vector F = 〈f1, f2, ..., fn〉 is ex-
tracted from D, where fi corresponds to feature i’s
relative frequency in D.

Finally, a distance function δ and a threshold t are
set, such that if δ(x, y) < δ(x, z), x is considered to
be closer to y than to z. The authors use normalized
dot-product (cosine distance), defined as:

δ(M,F ) =
M · F
‖M‖‖F‖

=

∑n
i=1mifi√∑n

i=1m
2
i

√∑n
i=1 f

2
i

as it is shown effective for stylometry (Noecker and
Juola, 2009) and efficient for large-scale datasets.
Note that the authors define closer to using > in-
stead of <, which is consistent with cosine distance
(where 1 is perfect match). However, we use < as the
more intuitive direction (according to which a smaller
distance means better match), and adjust cosine dis-
tance δ in the equation above to 1− δ.

The threshold t is set such that we determine that
D is written by A when δ(M,F ) < t. Ideally, it is em-
pirically determined by analysis of the average δ be-
tween the author’s training documents. However, al-
though mentioned in their paper, they evaluate their
method using a hard coded threshold that does not
undertake these author-wise δ’s into account (which
V a does, as seen next).

6.2.2 Vσ, V a, V aσ : Sigma Verification

We apply two adjustments to V :
1) Vσ: Per-Feature SD Normalization – The

first improvement is based on the variance of the au-
thor’s writing style. If an author has rather unvar-
ied style, we want a tighter bound for verification,
whereas for a more varied style we can loosen the

model to be more accepting. To do so we use the
standard deviation of an author, denoted SD, on a
per-feature basis. For each author, we determine the
SD of all of his features. When computing distance
between an author and a document, we divide each
feature-distance by its SD, so if the SD is smaller,
A and D move closer together, otherwise they move
farther apart. This idea is applied in (Araujo et al.,
2005) for authentication through typing biometrics,
however, to the best of our knowledge, this is the
first use of this method for stylometric verification.

2) V a: Per-Author Threshold Normalization
– The second improvement we offer is to adjust the
verification threshold t on a per-author basis, based
on the average pairwise distance between all of the
author’s documents, denoted δA. V does not take
this into account and instead uses a hard threshold.
Using δA to determine the threshold is, intuitively,
an improvement because it accounts for how spread
out the documents of an author are. This allows the
model to relax if the author has a more varied style.
Similarly to V , this “varying” threshold is still ap-
plied by setting a fixed threshold t across all authors,
determined empirically over the training set; however
for V a every author-document distance measurement
δ is adjusted by subtracting δA prior to being com-
pared with t, thus allowing per-author thresholds but
still requires the user to set only one fixed threshold
value.

Tab. 1 details the differences in distance calcula-
tions and threshold test among V , Vσ and V a. We
denote δD,A as the overall distance measured by some
distance metric δ between the feature vector of docu-
ment D and the centroid vector of author A across all
his documents, denoted C(A). In addition we denote
the respective feature level representation of δ as fol-
lows: δD,A = ∆(Di, C(A)i)

n
i=1, where n is the num-

ber of features (dimension of D and C(A)). Finally,
we define σ(A) as the standard deviation vector of
author A’s features, and δA as the pairwise distance
between all of A’s documents.

Note that using V a may derive nonintuitive thresh-
olds (e.g. negative thresholds when using cosine
distance, which normally produces values in [0, 1]).
However this is only to adjust to the distance shift
from δD,A (used in V ) by δA to δD,A − δA used by
V a, i.e. it is a byproduct of the per-author threshold
normalization.



XXXXXXXXXXDistance
Test

δ < t δ − δA < t

δD,A = ∆(Di, C(A)i)
n
i=1 V V a

δσD,A = ∆( Di

σ(A)i
, C(A)i
σ(A)i

)ni=1 Vσ V aσ

Table 1: Differences in distance calculation and t-
threshold test for V , Vσ and V a.

6.3 Standalone Verification: Evaluation

We evaluate the methods above on the the EBG cor-
pus, and the blog corpus as control. The evaluation
is done by examining false positive and false negative
error rates, visualized via ROC curves. The EBG
corpus is evaluated only on the non-adversarial docu-
ments, and the blog corpus is evaluated entirely. The
evaluation is done using 10-fold cross-validation with
the 〈500, 2〉-chars feature set, where author models
are built using the training documents. In each fold,
every test document is tested against every one of the
authors models, including its own (which is obviously
trained on other documents of the author).

ROC curves for evaluation of V , Vσ and V aσ are
illustrated in Fig. 2 and Fig. 3 for the EBG and the
blog corpora, respectively.
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Figure 2: ROC curves for V , Vσ and V aσ evaluation
on the EBG corpus.

On the EBG corpus Vσ significantly outperforms V
(and can be seen clearly from FP = 0.05 and above),
at a confidence level of p-val < 0.01. V seems to
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Figure 3: ROC curves for V , Vσ and V aσ evaluation
on the blog corpus.

outperform V aσ up to FP = 0.114, at which on V aσ
outperforms V , at a confidence level of p-val < 0.01.
However, these results change for the blog control cor-
pus, where V significantly outperforms both Vσ and
V aσ . One way to explain the differences is by the char-
acteristics of the corpora: the EBG is a “cleaner” and
more stylistically consistent corpus, consisting of all
English formal writing samples (essays written origi-
nally for business or academic purposes), whereas the
blog dataset contains less structured and formal lan-
guage, which may reduce the distinguishable effects of
style variance normalization. This is supported also
by the increased performance for EBG compared to
the blog corpus (larger AUC). Clearly the results sug-
gest that there is no one method preferable over the
other, and selecting a verifier for a problem should
rely on empirical testing over a stylistically similar
training data.

As for the effect of adding the per-author thresh-
old adjustments, for both corpora Vσ outperforms
V aσ on low FPR until they intersect (at FP = 0.27
and FP = 0.22 for the EBG and blog corpora, re-
spectively), at which point V aσ begins to outperform
Vσ. These properties allow various verification ap-
proaches to be used per need, dependent on false
positive and false negative error rates constraints the
problem in hand may impose.

7 Classify-Verify

The main novelty and contribution of this paper is in-
troducing the Classify-Verify method. This method



is an abstaining classifier (Chow, 1970), i.e. a classi-
fier that refrains from classifications in certain cases
to reduce misclassifications. Classify-Verify combines
classification with verification, to expand closed-
world authorship problems to open-world, by essen-
tially adding another class: “unknown”. Another as-
pect of the novelty of our approach is the utilization
of abstaining classification methods to upgrade from
closed-world to open-world, where we evaluate how
methods for thwarting wrongly classified instances
apply on misclassifications that originate in being
outside the assumed suspect set, rather than simply
missing the true suspect.

First, closed-world classification is applied on the
document in question, D, and the author suspect
set A = {A1, ..., An} (with their sample documents).
Then, the output of the classifier Ai ∈ A, is given
to the verifier to determine the final output. Feeding
only the classifier result into the verifier utilizes the
high accuracy attainable by classifiers, which outper-
form verifiers in closed-world settings, thus focusing
the verifier only on the top choice author in A (or
least worse choice of all). The verifier determines
whether to accept Ai or reject by returning ⊥, based
on a verification threshold t. Classify-Verify is essen-
tially a classifier over the suspect set A ∪ {⊥}.

The threshold t selection process can be automated
with respect to varying expected portions of in-set
and not-in-set documents. We denote the likelihood
of D’s author being in A, the expected in-set docu-
ments fraction, as p = Pr[AD ∈ A] (making the like-
lihood of the expected not-in-set documents 1 − p).
In addition, we use the notation p-〈measure〉, which
refers to that measure’s weighted average with re-
spect to p. For instance, p-F1 is the weighted F1-
score, weighted over F1-scores of p expected in-set
documents and 1− p expected not-in-set documents.
t can thus be determined in several ways:

1) Manual: The threshold t can be manually set
by the user. The threshold determines the sensitivity
of the verifier, so setting t manually allows adjusting
it from strict to relaxed, where the stricter it is, the
less likely it is to accept the classifier’s output. This
allows tuning the algorithm to different settings, im-
posing the desired rigidity (expressed in limiting false
positive and false negative error rates).

2) p-Induced Threshold: The threshold can be
set empirically over the training set to the one that
maximizes the target measurement, e.g. F1-score, in
an automated process. In case p is given, the al-
gorithm will apply cross-validation on the training

data alone using the range of all relevant manually
set thresholds (at some preset decimal precision ad-
vancements) and will choose the threshold that yields
the best target measurement. This is essentially ap-
plying Classify-Verify recursively on the training data
one level deeper with a range of manual thresholds.
The relevant threshold search range is determined au-
tomatically by the minimum and maximum distances
observed in the verify phase of Classify-Verify.
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Figure 4: 0.5-F1 results for Classify-Verify on EBG
using SMO SVM and Vσ with varying manually-set
thresholds.

Fig. 4 illustrates the automated threshold tuning
process on the EBG corpus for p = 0.5 (i.e. 50% ex-
pected in-set documents). In this example, Classify-
Verify uses SMO SVM as classifier, Vσ as verifier and
manually-set thresholds. The target measurement
is F1-score, i.e. the automated process would have
chosen the threshold that maximizes 0.5-F1 (here at
t = 0.15). The base assumption is that the threshold
that maximizes the target measurement on the train-
ing set is also the best choice for the testing phase.

An observation that should be noted is that max
0.5-F1 outperforms the F1-score at the intersection
of the in-set and not-in-set curves. This is due to cal-
culating 0.5-F1 in a “micro” rather than a “macro”
fashion: the confusion matrices 4 of in-set and not-in-
set are aggregated in a weighted sum and only then
is the weighted 0.5-F1 calculated, across all authors
(and ⊥), rather than weighing the in-set and not-in-
set F1-scores in a simple weighted average.

4A table in which each column represents the docu-
ments in a predicted class and each row represents the
documents in an actual class



3) in-set/not-in-set-Robust: If the expected
in-set and not-in-set documents proportion is un-
known, we can apply the same idea of the previ-
ously described threshold. If we examine the Classify-
Verify F1-score curve for some p along a range of
thresholds, as p increases, it favors smaller (more ac-
cepting) thresholds, therefore the curve behaves dif-
ferently for different values of p; however, all curves
intersect at one t – at which the in-set and not-in-set
curves intersect. This is illustrated in Fig. 5, which
presents the same results as Fig. 4, only for varying
values of p (0.1 to 0.9, with steps of 0.1).
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Figure 5: p-F1 results for Classify-Verify on EBG
using SMO SVM and Vσ with varying manually-set
thresholds and varying values of p.

This can be utilized to automatically obtain a
threshold robust for any value of p by taking thresh-
olds that minimize the difference between p-F1 and
q-F1 curves, for any arbitrary p, q ∈ (0, 1) (for sim-
plicity we use 0.3 and 0.7; minimizing the difference
is an approximation of the true intersection). As il-
lustrated in Fig. 5, the robust threshold does not
guarantee the highest measurement; it does, how-
ever, guarantee a relatively high expected value of
that measure, independent of p, and thus robust for
any open-world settings. We denote this measure-
ment as p-〈measure〉R (for Robust), e.g. p-F1R.

Finally, the entire Classify-Verify algorithm is de-
scribed in Alg. 1, and the flow of the algorithm is
illustrated in Fig. 6.
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Figure 6: The flow of the Classify-Verify method on
a test document D and a suspect set A, with optional
threshold t and in-set portion p.

8 Evaluation and Results

8.1 Evaluation Methodology

8.1.1 Main

In our main experiment we evaluate the Classify-
Verify method on the EBG corpus, excluding the ad-
versarial documents, and the blog corpus as control.
We evaluate the datasets in two settings: when the
authors of the documents under test are in the set of
suspects (in-set), and when they are not (not-in-set).

Each classification over n authors A = {A1, ..., An}
can result with one of n+1 outputs: an author Ai ∈ A
or ⊥ (meaning: “unknown”). Therefore when the
verifier accepts, the final result is the author Ai cho-
sen by the classifier, and when it rejects, the final
result is ⊥.

In the evaluation process we credit the Classify-
Verify algorithm when the verification step thwarts
misclassifications in in-set settings. For instance, if
D is written by A, classified as B but the verifier
replaces B with ⊥, we consider the result as true.
This approach for abstaining classifiers (Herbei and
Wegkamp, 2006) relies on the fact that we would
rather be truly told “unknown” than get a wrong
author.

We evaluate the overall performance with 10-folds
cross validation. For each fold experiment, with 9 of
the folds as training set and 1 fold as test set, we
evaluate every test document twice: once as in-set
and once as not-in-set.



Algorithm 1 Classify-Verify

Input: Document D, suspect author set A =
{A1, ..., An}, target measurement µ
Optional: in-set portion p, manual threshold t

Output: AD if AD ∈ A, and ⊥ otherwise
CA ← classifier trained on A
VA = {VA1 , ..., VAn} ← verifiers trained on A
if t, p not set then

t ← threshold maximizing p-µR of Classify-Verify
cross-validation on A
else if t not set then

t ← threshold maximizing p-µ of Classify-Verify
cross-validation on A
end if
A← CA(D)
if VA(D, t) = True then

return A
else

return ⊥
end if

For the classification phase of Classify-Verify over
n authors, we train n (n − 1)-class classifiers, where
each classifier Ci is trained on all authors except Ai.
A test document by some author Ai is then classified
as in-set using one of the n − 1 classifiers that were
trained on Ai training data; for simplicity we choose
Ci+1 (and C1 for An). For the not-in-set classifica-
tion, we simply use the classifier not trained on Ai,
i.e. Ci.

For the verification phase of Classify-Verify, we
evaluate several methods: one standalone method
(Vσ for the EBG corpus and V for the blog corpus),
Gap-Conf , P1 and P1-P2-Diff . We use Vσ for EBG
and V for the blog corpus, as these methods out-
perform the other standalone methods evaluated per
corpus, as discussed in Sec. 6.

The more the verifiers reject, the higher the pre-
cision is (as bad classifications are thrown away),
however recall decreases (as good classifications are
thrown away as well), and vice-versa – higher accep-
tance increases recall but decreases precision. There-
fore we measure overall performance using F1-score,
since it provides a balanced measurement of precision
and recall:

F1-score = 2× precision× recall
precision+ recall

precision =
tp

tp+ fp
, recall =

tp

tp+ fn

We use the two automatic verification threshold
selection methods discussed in Sec. 7: for the sce-

nario in which the proportion of in-set and not-in-set
is known with in-set proportion p = 0.5 (thus the
not-in-set proportion is 1 − p), we use the p-induces
threshold that maximizes F1-score on the training
set; for the scenario in which p is unknown, we use the
robust threshold configured as described in Sec. 7. In
order to calculate the F1-score of evaluating the test
set, we combine the confusion matrices produced by
the in-set and not-in-set evaluations in a p-weighted
average matrix, from which weighted F1-score is cal-
culated. We denote p-induced F1-scores as p-F1, and
robust threshold induced F1-scores evaluated at some
p as p-F1R.

The threshold optimization phase of the Classify-
Verify method discussed in Sec. 7 is done using 9-fold
cross validation with the same experimental settings
as the main experiment. Since F1-score is used to
evaluate the overall performance, it is also used as
the target measurement to maximize in the automatic
threshold optimization phase. When p is known, the
threshold that maximizes p-F1 is selected, and when
it is unknown, the robust threshold is selected as the
one for which the F1-score of different p’s intersect
(arbitrarily set to 0.3-F1 and 0.7-F1).

As baseline we compare F1-scores with 10-fold
cross validation results of closed-world classification
using the underlying classifier, SMO SVM with the
〈500, 2〉-chars feature set. We denote p-Base as the
baseline F1-score of the closed-world classifier where
the in-set proportion is p. It follows that 1-Base
is the performance in pure closed-world settings (i.e.
only in-set documents), and for any p ∈ [0, 1],
p-Base = p · 1-Base (since for the not-in-set docu-
ments, the classifier is always wrong).

8.1.2 Adversarial Settings

To evaluate the Classify-Verify method in adver-
sarial settings, we train our models on the non-
adversarial documents in the EBG corpus, and test
them on the imitation and obfuscation attack doc-
uments to measure how well Classify-Verify thwarts
attacks (by returning ⊥ instead of a wrong author).
In this context, ⊥ can be considered as either “un-
known” or “possible-attack”. We measure 0.5-F1,
i.e. how well Classify-Verify performs on attack doc-
uments in an open-world scenario, where the verifica-
tion threshold is set independent of a possible attack,
tuned only to maximize performance on expected in-
set and not-in-set document portions of 50% each.

As a baseline we compare results with standard
classification using SMO SVM with the 〈500, 2〉-chars



feature set.

8.2 Results

Tab. 2 summarizes the different F1-score measure-
ments terminology used throughout this section.

Term Meaning

p Portion of in-set documents
p-F1 F1-score of Classify-Verify for p portion

of in-set documents
p-F1R F1-score of Classify-Verify for p portion of

in-set documents, using robust thresholds
p-Base F1-score of closed-world classifier for

p portion of in-set documents
1-Base means pure closed-world settings
For each p ∈ [0, 1], p-Base = p · 1-Base

Table 2: F1-score references terminology.

8.2.1 Main

For the EBG corpus, the baseline closed-world clas-
sifier attains 1-Base of 0.928 in perfect in-set set-
tings, which follows that 0.5-Base = 0.464. As for
the blog corpus, 1-Base = 0.64 which follows that
0.5-Base = 0.32. Fig. 7 illustrates 0.5-F1 results
of the Classify-Verify method on the EBG corpus,
where the authors are equally likely to be in-set or
not-in-set (p = 0.5) and verification thresholds are
automatically selected to maximize 0.5-F1. A simi-
lar illustration of 0.5-F1 results for the blog corpus
is shown in Fig. 8.
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Figure 7: 0.5-F1 results of the Classify-Verify
method on the EBG corpus, where the expected
portion of in-set and not-in-set documents is equal
(50%). Classify-Verify attains 0.5-F1 that outper-
forms 0.5-Base and even close to 1-Base.
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Figure 8: 0.5-F1 results of the Classify-Verify method
on the blog corpus, where the expected portion
of in-set and not-in-set documents is equal (50%).
Classify-Verify attains 0.5-F1 that outperforms both
0.5-Base and 1-Base.

For both EBG and the blog corpora, Classify-
Verify 0.5-F1 results significantly outperform
0.5-Base (the dashed lines), using any of the under-
lying verification methods, at a confidence level of
p-val < 0.01.

Furthermore, the results are not only better than
the obviously bad 0.5-Base, but produce similar re-
sults to 1-Base, giving overall 0.5-F1 in open-world
settings up to ≈ 0.87. For the EBG corpus, moving to
open-world settings only slightly decreases F1-score
compared to the closed-world classifier performance
in closed-world settings (the dotted line), which is a
reasonable penalty for upgrading to open-world set-
tings. However, on the blog corpus, where the initial
1-Base is low (at 0.64), Classify-Verify manages to
both upgrade to open-world settings and outperform
1-Base. These results suggest that out of the in-set
documents, many misclassifications were thwarted by
the underlying verifiers, leading to an overall increase
in F1-score.

Next, we evaluate the robust threshold selection
scheme. In this scenario, the portion of in-set doc-
uments p is unknown in advance. Fig. 9 illustrates
p-F1R results for the EBG corpus, where different
p scenarios are “thrown” at the Classify-Verify clas-
sifier that uses robust verification thresholds. Simi-
lar illustration for the blog corpus are illustrated in
Fig. 10.

In the robust thresholds scenario using the EBG
corpus, Classify-Verify still significantly outperforms
the respective closed-world classifier (p-Base results)
for p < 0.7 with any of the underlying verifiers, at a
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Figure 9: p-F1R results of the Classify-Verify method
on the EBG corpus, where the expected portion of
in-set documents p varies from 10% to 90% and is as-
sumed to be unknown. Robust p-independent thresh-
olds are used for the underlying verifiers. Classify-
Verify attains p-F1R that outperforms the respective
p-Base.

confidence level of p-val < 0.01. For the blog corpus,
Classify-Verify significantly outperforms p-Base us-
ing any of the classifier-induced verifiers for all p, at
a confidence level of p-val < 0.01.

Moreover, the robust threshold selection hypothe-
sis holds true, and for both corpora all methods (with
the exception of V on the blog corpus) manage to
guarantee a high F1-score, at ≈ 0.7 and above, for
almost all values of p. For EBG, at p ≥ 0.7 the in-
set portion is large enough so that the overall p-Base
becomes similar to p-F1R. For the blog corpus, using
V fails and performs similar to 0.5-Base.

Of all verification methods, P1-P2-Diff is proven
the most preferable verifier to use, since it consis-
tently outperforms the other methods across almost
all values of p for both corpora, which implies it is
robust to domain variation.

8.2.2 Adversarial Settings

Evaluated on the EBG corpus under imitation and
obfuscation attacks, the baseline closed-world classi-
fier attains F1-scores of 0 and 0.044 for the imita-
tion and obfuscation attack documents, respectively.
These results mean that the closed-world classifier is
highly vulnerable to these types of attacks. Fig. 11
illustrates F1-scores for Classify-Verify on the attack
documents. Note that all attack documents are writ-
ten by in-set authors, and thus addressed as in-set
documents.

The results suggest that Classify-Verify success-
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Figure 10: p-F1R results of the Classify-Verify
method on the blog corpus, where the expected
portion of in-set documents p varies from 10% to
90% and is assumed to be unknown. Robust p-
independent thresholds are used for the underlying
verifiers. Classify-Verify attains p-F1R that outper-
forms the respective p-Base.

fully manages to thwart the majority of the attacks,
with up to 0.874 and 0.826 F1-scores for the obfusca-
tion and imitation attacks, respectively. These re-
sults are very close to the deception detection re-
sults reported in (Afroz et al., 2012), with F1-scores
of 0.85 for obfuscation and 0.895 for imitation at-
tacks. A major difference is that here these results
are obtained in open-world settings, with threshold
configuration that does not take inside-attacks under
consideration. Moreover, as opposed to the methods
applied in (Afroz et al., 2012), no attack documents
were used as training data.

Interestingly, the results above are obtained for a
standard p = 0.5 open-world scenario, without possi-
ble attacks in mind, yet the overall results are harmed
little to not at all, depending on the underlying ver-
ifier. For instance, when using Gap-Conf , 0.5-F1 is
at 0.799 in non-attack scenarios, and F1-scores are
0.784-0.826 when under attack.

9 Discussion

In this section we discuss interesting observations
from the results.

In Sec. 6 we examined two families of veri-
fiers, classifier-induced and standalone, later used by
Classify-Verify. The results suggest that classifier-
induced verifiers consistently outperform the stan-
dalone ones; however this trend may be limited to
large datasets with many suspect authors in the un-
derlying classifier, like those evaluated in this paper,
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Figure 11: F1-score results of the Classify-Verify
method on the EBG corpus under imitation and
obfuscation attacks, where the expected portion of
in-set and not-in-set documents is equal (50%).
Classify-Verify successfully thwarts most of the at-
tacks.

on which classifier-induced verifications rely. It may
be the case that on small author sets, standalone ver-
ifiers will perform better, and this direction should
be considered in future work. Moreover, the stan-
dalone verifiers presented here provide a reasonable
accuracy, which can be used in pure one-class set-
tings, where no training data exists except that of
the true author (a scenario in which classifier-induced
methods are useless).

The Classify-Verify 0.5-F1 results on both the
EBG and the blog corpora illustrated in Fig. 7
and Fig. 8 suggest that using P1 or P1-P2-Diff as
the underlying verification method provide domain-
independent results, at 0.5-F1 of ≈ 0.87. The su-
periority of P1-P2-Diff is emphasized by the p-F1R
results illustrated in Fig. 9 and Fig. 10, where p-F1R
over 0.7 is obtained for both corpora, independent
of p. Therefore P1-P2-Diff is proven as a robust,
domain and in-set/not-in-set proportion independent
verification method to be used with Classify-Verify.

Finally, Classify-Verify is shown effective in ad-
versarial settings, where it outperformed the tradi-
tional closed-world classifier, without the requirement
of training on adversarial data, like required in (Afroz
et al., 2012). Furthermore, no special threshold tun-
ing is needed to achieve this protection, i.e. we can
use the standard threshold selection schemes for non-
adversarial settings and still thwart most attacks. It
follows that results in adversarial settings can poten-
tially be improved, if p is tuned not to the likelihood
of in-set documents, but to the likelihood of an at-

tack.

10 Conclusion

From a forensics perspective, the possibility of au-
thors outside the suspect set makes the use of closed-
world classifiers unreliable. In addition, whether lin-
guistic authorship attribution can handle open-world
scenarios has important privacy implications for both
the authors of anonymous texts and those likely to be
falsely implicated by faults in such systems. This re-
search shows that when the closed-world assumption
is violated, traditional stylometric approaches fail un-
gracefully.

The Classify-Verify method proposed in this work
is not only able to handle open-world settings where
the author of a document may not be in the train-
ing set, but can also improve results in closed-world
settings, by abstaining from low-confidence classifica-
tion decisions. Furthermore, this method is able to
filter out attacks, as demonstrated on the adversarial
samples in the EBG corpus. In all these settings, the
method is able to replace wrong assertions with more
honest and useful statements of “unknown.”

We conclude that the Classify-Verify method is
preferable over the standard underlying closed-world
classifier. This statement is true regardless of the
expected in-set/not-in-set ratio of the data, and in
adversarial settings as well. Since the Classify-Verify
algorithm is general, it can be applied with any set of
stylometric classifiers and verifiers. In the forensics
context, when satisfactorily-rigorous techniques are
used, the Classify-Verify method is an essential tool
for forensic analysts facing the often case of open-
world problems.

We propose several directions for future work:
1) Other classification-related forensics and

privacy applications. An important characteris-
tic of the Classify-Verify algorithm is its generality,
which makes it applicable to other problems. For in-
stance, it can be used for behavioral biometrics, like
in authentication systems that may have a set of po-
tential users (e.g. employees in an office) but should
consider outside attacks; the Active Linguistic Au-
thentication dataset (Juola et al., 2013) is a perfect
candidate dataset for such application.

2) Fusion of verification methods. Having var-
ious verification methodologies can be used to com-
bine decisions, for instance using the Chair-Varshney
optimal fusion rule (Chair and Varshney, 1986), into
a centralized verification method that outperforms
its single components. This approach is motivated



by (Ali and Pazzani, 1995), which shows that greater
reduction in error rates is achieved when the verifiers
are distinctly different – here to be applied by using
both standalone and classifier-induced verifiers.

3) Utilization of Classify-Verify for scala-
bility. In cases where the analyst is faced with a
closed-world yet large problem, Classify-Verify may
be used to apply a divide-and-conquer approach, to
increase the potential accuracy of the classifier in-
hand. Instead of building a model trained over all
suspect authors, many small Classify-Verify models
can be trained. Each test document will be classi-
fied by all models, and all suspects for which their
model returns ⊥ are immediately omitted. All result
authors returned by the other models will compete in
a final round, by a Classify-Verify model (or simple
closed-world one) trained on all of them. Since each
phase of this problem formulation is much smaller
than one big model, this approach is initially prone to
higher success, and can potentially increase the accu-
racy attainable by forensic analysts in large problem
domains.
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