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I This work: Evaluating stylometric sensors for active
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Motivation

I Increasing interest in behavioral biometrics [AT07]
I Use common hardware to authenticate (mouse, keyboard)

I Yet achieved performance is mixed ⇒ better solutions required
I Most work uses static data

I Active Linguistic Authentication Dataset [JNS+13]: typical HCI
I Stylometry: effective identifier

I High-level behavioral biometric for authentication systems
I Primary goal: use stylometric sensors in multi-modal systems

[ keyboard | mouse | web-browsing | stylometry ]

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 5/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Introduction
Motivation

Motivation

I Increasing interest in behavioral biometrics [AT07]
I Use common hardware to authenticate (mouse, keyboard)

I Yet achieved performance is mixed ⇒ better solutions required
I Most work uses static data

I Active Linguistic Authentication Dataset [JNS+13]: typical HCI
I Stylometry: effective identifier

I High-level behavioral biometric for authentication systems
I Primary goal: use stylometric sensors in multi-modal systems

[ keyboard | mouse | web-browsing | stylometry ]

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 5/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Introduction
Motivation

Motivation

I Increasing interest in behavioral biometrics [AT07]
I Use common hardware to authenticate (mouse, keyboard)

I Yet achieved performance is mixed ⇒ better solutions required
I Most work uses static data

I Active Linguistic Authentication Dataset [JNS+13]: typical HCI
I Stylometry: effective identifier

I High-level behavioral biometric for authentication systems
I Primary goal: use stylometric sensors in multi-modal systems

[ keyboard | mouse | web-browsing | stylometry ]

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 5/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Introduction
Motivation

Motivation

I Increasing interest in behavioral biometrics [AT07]
I Use common hardware to authenticate (mouse, keyboard)

I Yet achieved performance is mixed ⇒ better solutions required
I Most work uses static data

I Active Linguistic Authentication Dataset [JNS+13]: typical HCI
I Stylometry: effective identifier

I High-level behavioral biometric for authentication systems
I Primary goal: use stylometric sensors in multi-modal systems

[ keyboard | mouse | web-browsing | stylometry ]

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 5/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Introduction
Motivation

Motivation

I Increasing interest in behavioral biometrics [AT07]
I Use common hardware to authenticate (mouse, keyboard)

I Yet achieved performance is mixed ⇒ better solutions required
I Most work uses static data

I Active Linguistic Authentication Dataset [JNS+13]: typical HCI
I Stylometry: effective identifier

I High-level behavioral biometric for authentication systems
I Primary goal: use stylometric sensors in multi-modal systems

[ keyboard | mouse | web-browsing | stylometry ]

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 5/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Introduction
Motivation

Motivation

I Increasing interest in behavioral biometrics [AT07]
I Use common hardware to authenticate (mouse, keyboard)

I Yet achieved performance is mixed ⇒ better solutions required
I Most work uses static data

I Active Linguistic Authentication Dataset [JNS+13]: typical HCI
I Stylometry: effective identifier

I High-level behavioral biometric for authentication systems
I Primary goal: use stylometric sensors in multi-modal systems

[ keyboard | mouse | web-browsing | stylometry ]

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 5/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Introduction
Motivation

Motivation

I Increasing interest in behavioral biometrics [AT07]
I Use common hardware to authenticate (mouse, keyboard)

I Yet achieved performance is mixed ⇒ better solutions required
I Most work uses static data

I Active Linguistic Authentication Dataset [JNS+13]: typical HCI
I Stylometry: effective identifier

I High-level behavioral biometric for authentication systems
I Primary goal: use stylometric sensors in multi-modal systems

[ keyboard | mouse | web-browsing | stylometry ]

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 5/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Introduction
Motivation

Motivation – Contd.

I Implications on forensic: post-mortem stylometric analysis
I Effective features in “noisy” environment?
I Sliding window size, overlap?
I Idle periods (no input)?
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I Active authentication ⇒ sensor data varies with time
I Verification must be on recent data only

I Different biometrics for different user activities
I Web browsing⇒ mouse + web activity
I Document editing⇒ keystrokes + stylometry

I ⇒ Multi-modal authentication [SZJK07]
I Robust to dynamic real-time HCI
I Sensor fusion⇒ greater error reduction [AP95]
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Stylometry

I Stylometry: authorship attribution based on linguistic style
I Features: function words, grammar, n-gram frequencies...
I Used also for profiling: gender, age, native language

I In active authentication context: verification
I Unary author-specific classifiers to determine user/attacker

I Challenges:
I Open-world settings: much harder than “standard” stylometry
I Inconsistent input frequency⇔ stylometry data requirements

I But:
I Unique idiosyncrasies like misspellings / keystroke patterns
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Dataset Collection

I Used the full Active Linguistic Authentication Dataset [JNS+13]
I Computer input collected in a simulated work environment

I One 40-hour week data collected from 80 temps
I Research and writings tasks
I Tracked keyboard, mouse and web browsing behavior
I Uniformity: same hardware for all workers
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Dataset Preprocessing

I Used 67 of the 80 users w/ minimum 16.67 hours of activity

Min. chars/user 17,027

Max chars/user 263,165

AVg. 84,206

Total 5,641,788

I All 5-day keyboard and mouse events gathered in one file/user
I Divided into 5 equal-size folds
I Reduced all > 2 min idle periods to exactly 2 min
I Collected all keystrokes: alphanumeric & special keys

(shift, ctrl, backspace...)
I Special chars converted to 1-char placeholders

(e.g. backspace ⇒ β)
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Challenges and Limitations

I Potential performance issues
I On-the-fly heavy linguistic processing

I Authenticating input not designated for authentication
I Credentials collection
I Secure processing & storage is required
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Previous Evaluation

I Initial data-based windows analysis on 14 users [JNS+13]:
I Day windows: 88% accuracy

k -NN classifier + Manhattan distance + char n-grams
I 100-1000-word windows: 93% accuracy

No overlap, SVM classifier + extensive feature set
I Proof of concept, but:

I Only 14 users
I Data-wise windows (whole day, X words) – not useful for AA

systems
I Fast decision making is required
I Miss attacks (“bad” windows w/ “good” data)

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 15/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Challenges and Limitations
Previous Evaluation
Real-Time Approach

Previous Evaluation

I Initial data-based windows analysis on 14 users [JNS+13]:
I Day windows: 88% accuracy

k -NN classifier + Manhattan distance + char n-grams
I 100-1000-word windows: 93% accuracy

No overlap, SVM classifier + extensive feature set
I Proof of concept, but:

I Only 14 users
I Data-wise windows (whole day, X words) – not useful for AA

systems
I Fast decision making is required
I Miss attacks (“bad” windows w/ “good” data)

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 15/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Challenges and Limitations
Previous Evaluation
Real-Time Approach

Previous Evaluation

I Initial data-based windows analysis on 14 users [JNS+13]:
I Day windows: 88% accuracy

k -NN classifier + Manhattan distance + char n-grams
I 100-1000-word windows: 93% accuracy

No overlap, SVM classifier + extensive feature set
I Proof of concept, but:

I Only 14 users
I Data-wise windows (whole day, X words) – not useful for AA

systems
I Fast decision making is required
I Miss attacks (“bad” windows w/ “good” data)

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 15/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Challenges and Limitations
Previous Evaluation
Real-Time Approach

Previous Evaluation

I Initial data-based windows analysis on 14 users [JNS+13]:
I Day windows: 88% accuracy

k -NN classifier + Manhattan distance + char n-grams
I 100-1000-word windows: 93% accuracy

No overlap, SVM classifier + extensive feature set
I Proof of concept, but:

I Only 14 users
I Data-wise windows (whole day, X words) – not useful for AA

systems
I Fast decision making is required
I Miss attacks (“bad” windows w/ “good” data)

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 15/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Challenges and Limitations
Previous Evaluation
Real-Time Approach

Previous Evaluation

I Initial data-based windows analysis on 14 users [JNS+13]:
I Day windows: 88% accuracy

k -NN classifier + Manhattan distance + char n-grams
I 100-1000-word windows: 93% accuracy

No overlap, SVM classifier + extensive feature set
I Proof of concept, but:

I Only 14 users
I Data-wise windows (whole day, X words) – not useful for AA

systems
I Fast decision making is required
I Miss attacks (“bad” windows w/ “good” data)

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 15/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Challenges and Limitations
Previous Evaluation
Real-Time Approach

Previous Evaluation

I Initial data-based windows analysis on 14 users [JNS+13]:
I Day windows: 88% accuracy

k -NN classifier + Manhattan distance + char n-grams
I 100-1000-word windows: 93% accuracy

No overlap, SVM classifier + extensive feature set
I Proof of concept, but:

I Only 14 users
I Data-wise windows (whole day, X words) – not useful for AA

systems
I Fast decision making is required
I Miss attacks (“bad” windows w/ “good” data)

Stolerman et al. Active Authentication: Real-Time Stylometric Evaluation 15/27



Motivation
Background

Dataset
Methodology

Evaluation
Conclusion

Challenges and Limitations
Previous Evaluation
Real-Time Approach

Real-Time Approach

I Closed-world classifier: one SVM trained on all 67 users
I Time-wise overlapping windows:

I Size (≥): 10, 30, 60, 300, 600 & 1200 secs
I Overlap (≤): 10 / 60 secs

I Overlap: allow sufficient data + frequent decisions
I Elimination of idle periods allows maximum #windows evaluation

 

...ununited american sainβσroosevltmorris σtrinity71σ... User stream: 

0 5 10 15 20 25 30 35 40 45 50 55 60 
Time (secs): 

win#1: 0-30 
win#2: 10-40 

win#3: 20-50 
win#4: 30-60 

win#5: 40-70 

win#5: 50-80 30-second windows, 10-seconds overlap: 
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Real-Time Approach – Contd.

I The AA feature-set:
I Variation of the Writeprints feature-set [AC08]
I Vast range of linguistic features

char/word/POS n-grams, function words, word lengths, digits
I “Applies” special chars: chββCchββhicago⇒ Chicago
I Frequency-based features normalization
I Extracted using the JStylo authorship attribution

framework [MAC+12]
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Real-Time Approach – Contd.

I Applied minimum chars/window thresholds
I Discarded too small windows (below threshold):

“not enough data to decide”
I Thresholds: 100–1000 characters (steps of 100)
I Availability⇔ potential accuracy

I Only sensors w/ train data for all users after filtering are kept
I 37 of the 60 sensor configurations are kept
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I Measure averaged FAR & FRR on 5-fold cyclic cross-validation
I Stylometry sensors intended for a multimodal system

I Requires knowledge of expected FAR/FRR
I ⇒ analysis technique:
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I Stylometry sensors intended for a multimodal system

I Requires knowledge of expected FAR/FRR
I ⇒ analysis technique:

6. Continuous Authentication on a 67 User Dataset

6.1. Training, Characterization, Testing

The data of each of the 67 users’ active interaction with the computer was divided into 5 equal-size
folds (each containing 20% time span of the full set). We performed training of each classifier on the
first three folds (60%). We then tested their performance on the fourth fold. This phase is referred to as
“characterization”, because its sole purpose is to form estimates of FAR and FRR for use by the fusion
algorithm. We then tested the performance of the classifiers, individually and as part of the fusion system,
on the fifth fold. This phase is referred to as “testing” since this is the part that is used for evaluation the
performance of the individual sensors and the fusion system. The three phases of training, characterization,
and testing as they relate to the data folds are shown in Fig. 6.

• Training on folds 1, 2, 3. Characterization on fold 4. Testing on fold 5.

• Training on folds 2, 3, 4. Characterization on fold 5. Testing on fold 1.

• Training on folds 3, 4, 5. Characterization on fold 1. Testing on fold 2.

• Training on folds 4, 5, 1. Characterization on fold 2. Testing on fold 3.

• Training on folds 5, 1, 2. Characterization on fold 3. Testing on fold 4.

Sensor Performance:
Training, Characterization, Testing

5

Methodology

60% of user 1 dataUser 1

We train, characterize, and test the binary classifier for User 1 on two classes:
1. User  1
2. Users 2 through 67

20% of user 1 20% of user 1

Training Characterization Testing

60% of user 2 dataUser 2 20% of user 2 20% of user 2

Training Characterization Testing

60% of user 3 dataUser 3 20% of user 3 20% of user 3

60% of user 67 dataUser 67 20% of user 67 20% of user 67

… … … …

Class 1: Accept

Class 2: Reject

Figure 6: The three phases of processing the data to determine the individual performance of each sensors and the performance
of the fusion system that combines some subset of these sensors.

The common evaluation method used with each sensor for data fusion was measuring the averaged
error rates across five experiments; In each experiment, data of 3 folds was taken for training, 1 fold for
characterization, and 1 for testing. The FAR and FRR computed during characterization were taken as
input for the fusion system as a measurement of the expected performance of the sensors. Therefore each
experiment consisted of three phases: 1) train the classifier(s) using the training set, 2) determine FAR and
FRR based on the training set, and 3) classify the windows in the test set.

Unless otherwise specified, the experiments we ran were using the fusion system on the full 67 user set
with the 2 keystroke dynamics sensors, 9 mouse sensors, and the stylometry sensor.

6.2. Contribution of Individual Sensors

For each low-level sensor, we used the Naive Bayes classifier [46] for mapping from the feature space to
the decision space. For the stylometry sensor, we used an SVM as described in §4. In the training phase for
low-level sensors, the empirical distribution for feature probabilities were constructed from the frequency of
each feature in the training segment of each user’s data. Two such histograms were constructed for each
user j. The first histogram was constructed from the training segment of the data of that user. The second
histogram was constructed from all the training segments of the other users. These two histograms are the
empirical feature distributions associated with each user.

12
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Evaluation – Contd.

Availability by minimum char thresholds:

I The larger the window ⇒ the higher its availability
I Windows < 300 secs – not very useful
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Average FAR/FRR:

I Strict sensors
I The larger the window ⇒ the less affected by min char thresholds
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Conclusion

I Proof of concept in [JNS+13] – insufficient for real-world settings
I With small time-wise windows: performance deteriorates drastically

I Still, can be used in a mixture-of-experts approach – multi-modal
systems

I Classification approach still limited
I Should attempt open-world classifiers
I Should attempt low-level linguistic features, typing patterns

I Immediate next step: fusion
I Initial closed-world eval on 19 users: < 1% FAR/FRR! [FSA+13]
I To be continued...
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Thank You

Thank You!
Questions?

I Contact: stolerman@cs.drexel.edu
I Drexel Privacy Security & Automation Lab: http://psal.cs.drexel.edu/
I Drexel Data Fusion Lab: http://dfl.ece.drexel.edu/
I Juola & Associates: http://juolaassociates.com/
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